1、专题训练(四)整式的化简求值1计算:(1)8a7b12a5b;(2)2x23x4x26x5;来源:学科网ZXXK(3)3xy4x2y3xy25x2y;来源:Z,xx,k.Com(4)(5mn2m3n)(7m7mn);来源:Z,xx,k.Com(5)a2(5a22a)2(a23a);(6)3a2b2(a3b)4a2先化简,再求值:(1)2xy(2y2x2)(x22y2),其中x,y3;(2)(4a3a2)33a3(a4a3),其中a2;(3)4x3x2x(x3),其中x;(4)3x2y2xy22(xyx2y)xy3xy2,其中x3,y.3假设|x2|(y)20,求代数式x32x2yx33x2y5
2、xy275xy2的值来源:学科网ZXXK4假设a22b25,求多项式(3a22abb2)(a22ab3b2)的值5x2,y,求kx2(xy2)(xy2)的值一位同学在做题时把x2看成x2,但结果也正确,计算过程无误,求k的值6求m2n2mn3nm23nm4m2n的值,其中m是最小的正整数,n是绝对值等于1的数来源:学科网ZXXK7一位同学做一道题:“两个多项式A、B,计算2AB他误将“2AB看成“A2B,求得的结果为9x22x7.Bx23x2,请求出正确答案参考答案1(1)原式(812)a(75)b4a2b.(2)原式6x29x5.(3)原式3xyx2y3xy2.(4)原式5mn2m3n7m7
3、mn12mn9m3n.(5)原式a25a22a2a26a4a24a.(6)原式3a(2b2a6b4a)3a2b2a6b4a5a8b.2.(1)原式2xy2y2x2x22y22x22xy.当x,y3时,原式21(3).(2)原式7a33a25a3.当a2时,原式55.(3)原式4x3.当x时,原式1.(4)原式3x2y2xy22xy3x2yxy3xy2xy2xy.当x3,y时,原式.3.由题意,得x2,y.原式x3x2y71.4.原式3a22abb2a22ab3b22a24b2.当a22b25时,原式2(a22b2)10.5.原式(k)xy2.由题意知:代数式的值与x无关,所以k0.解得k.6.m2n2mn3nm23nm4m2nm2nmn.由题意知:m1,n1.当m1,n1时,原式;当m1,n1时,原式.7.由题意,得A2(x23x2)9x22x7,A9x22x72(x23x2)9x22x72x26x47x28x11.所以正确答案为:2AB2(7x28x11)(x23x2)14x216x22x23x215x213x20.