1、2023学年高考数学模拟测试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图,设为内一点,且,则与的面积之比为ABCD2已知函数,若,对任意恒有,在区间上有且只有一个使,则的最大值为( )A
2、BCD3若将函数的图象上各点横坐标缩短到原来的(纵坐标不变)得到函数的图象,则下列说法正确的是()A函数在上单调递增B函数的周期是C函数的图象关于点对称D函数在上最大值是14在中,角的对边分别为,若则角的大小为()ABCD5某网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是( )A月收入的极差为60B7月份的利润最大C这12个月利润的中位数与众数均为30D这一年的总利润超过400万元6已知集合,若AB,则实数的取值范围是( )ABCD7已知双曲线,为坐标原点,、为其左、右焦点,点在的渐近线上,且,则该双曲线的渐近线方程为( )ABCD8过椭圆的左焦点
3、的直线过的上顶点,且与椭圆相交于另一点,点在轴上的射影为,若,是坐标原点,则椭圆的离心率为( )ABCD9已知为圆:上任意一点,若线段的垂直平分线交直线于点,则点的轨迹方程为( )ABC()D()10定义:表示不等式的解集中的整数解之和.若,则实数的取值范围是ABCD11将函数f(x)=sin 3x-cos 3x+1的图象向左平移个单位长度,得到函数g(x)的图象,给出下列关于g(x)的结论:它的图象关于直线x=对称;它的最小正周期为;它的图象关于点(,1)对称;它在上单调递增.其中所有正确结论的编号是( )ABCD12设集合则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13
4、能说明“若对于任意的都成立,则在上是减函数”为假命题的一个函数是_.14的三个内角A,B,C所对应的边分别为a,b,c,已知,则_.15若关于的不等式在上恒成立,则的最大值为_16已知向量,若,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知,.(1)求的值;(2)求的值.18(12分)已知函数.(1)若函数在上单调递减,求实数的取值范围;(2)若,求的最大值.19(12分)我国在贵州省平塘县境内修建的500米口径球面射电望远镜(FAST)是目前世界上最大单口径射电望远镜.使用三年来,已发现132颗优质的脉冲星候选体,其中有93颗已被确认为新发现的脉冲星,
5、脉冲星是上世纪60年代天文学的四大发现之一,脉冲星就是正在快速自转的中子星,每一颗脉冲星每两脉冲间隔时间(脉冲星的自转周期)是-定的,最小小到0.0014秒,最长的也不过11.765735秒.某-天文研究机构观测并统计了93颗已被确认为新发现的脉冲星的自转周期,绘制了如图的频率分布直方图.(1)在93颗新发现的脉冲星中,自转周期在2至10秒的大约有多少颗?(2)根据频率分布直方图,求新发现脉冲星自转周期的平均值.20(12分)已知函数(为实常数).(1)讨论函数在上的单调性;(2)若存在,使得成立,求实数的取值范围.21(12分)已知.(1)求不等式的解集;(2)记的最小值为,且正实数满足.证
6、明:.22(10分)如图,平面四边形为直角梯形,将绕着翻折到.(1)为上一点,且,当平面时,求实数的值;(2)当平面与平面所成的锐二面角大小为时,求与平面所成角的正弦.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】作交于点,根据向量比例,利用三角形面积公式,得出与的比例,再由与的比例,可得到结果.【题目详解】如图,作交于点,则,由题意,且,所以又,所以,即,所以本题答案为A.【答案点睛】本题考查三角函数与向量的结合,三角形面积公式,属基础题,作出合适的辅助线是本题的关键.2、C
7、【答案解析】根据的零点和最值点列方程组,求得的表达式(用表示),根据在上有且只有一个最大值,求得的取值范围,求得对应的取值范围,由为整数对的取值进行验证,由此求得的最大值.【题目详解】由题意知,则其中,又在上有且只有一个最大值,所以,得,即,所以,又,因此当时,此时取可使成立,当时,所以当或时,都成立,舍去;当时,此时取可使成立,当时,所以当或时,都成立,舍去;当时,此时取可使成立,当时,所以当时,成立;综上所得的最大值为故选:C【答案点睛】本小题主要考查三角函数的零点和最值,考查三角函数的性质,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题.3、A【答案解析】根据三角函
8、数伸缩变换特点可得到解析式;利用整体对应的方式可判断出在上单调递增,正确;关于点对称,错误;根据正弦型函数最小正周期的求解可知错误;根据正弦型函数在区间内值域的求解可判断出最大值无法取得,错误.【题目详解】将横坐标缩短到原来的得:当时,在上单调递增 在上单调递增,正确;的最小正周期为: 不是的周期,错误;当时,关于点对称,错误;当时, 此时没有最大值,错误.本题正确选项:【答案点睛】本题考查正弦型函数的性质,涉及到三角函数的伸缩变换、正弦型函数周期性、单调性和对称性、正弦型函数在一段区间内的值域的求解;关键是能够灵活应用整体对应的方式,通过正弦函数的图象来判断出所求函数的性质.4、A【答案解析
9、】由正弦定理化简已知等式可得,结合,可得,结合范围,可得,可得,即可得解的值【题目详解】解:,由正弦定理可得:,故选A【答案点睛】本题主要考查了正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题5、D【答案解析】直接根据折线图依次判断每个选项得到答案.【题目详解】由图可知月收入的极差为,故选项A正确;1至12月份的利润分别为20,30,20,10,30,30,60,40,30,30,50,30,7月份的利润最高,故选项B正确;易求得总利润为380万元,众数为30,中位数为30,故选项C正确,选项D错误.故选:.【答案点睛】本题考查了折线图,意在考查学生的理解能力和应用能力.6、D
10、【答案解析】先化简,再根据,且AB求解.【题目详解】因为,又因为,且AB,所以.故选:D【答案点睛】本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.7、D【答案解析】根据,先确定出的长度,然后利用双曲线定义将转化为的关系式,化简后可得到的值,即可求渐近线方程.【题目详解】如图所示:因为,所以,又因为,所以,所以,所以,所以,所以,所以,所以渐近线方程为.故选:D.【答案点睛】本题考查根据双曲线中的长度关系求解渐近线方程,难度一般.注意双曲线的焦点到渐近线的距离等于虚轴长度的一半.8、D【答案解析】求得点的坐标,由,得出,利用向量的坐标运算得出点的坐标,代入椭圆的方程,可得出关于
11、、的齐次等式,进而可求得椭圆的离心率.【题目详解】由题意可得、.由,得,则,即.而,所以,所以点.因为点在椭圆上,则,整理可得,所以,所以.即椭圆的离心率为故选:D.【答案点睛】本题考查椭圆离心率的求解,解答的关键就是要得出、的齐次等式,充分利用点在椭圆上这一条件,围绕求点的坐标来求解,考查计算能力,属于中等题.9、B【答案解析】如图所示:连接,根据垂直平分线知,故轨迹为双曲线,计算得到答案.【题目详解】如图所示:连接,根据垂直平分线知,故,故轨迹为双曲线,故,故轨迹方程为.故选:.【答案点睛】本题考查了轨迹方程,确定轨迹方程为双曲线是解题的关键.10、D【答案解析】由题意得,表示不等式的解集
12、中整数解之和为6.当时,数形结合(如图)得的解集中的整数解有无数多个,解集中的整数解之和一定大于6.当时,数形结合(如图),由解得.在内有3个整数解,为1,2,3,满足,所以符合题意.当时,作出函数和的图象,如图所示. 若,即的整数解只有1,2,3.只需满足,即,解得,所以.综上,当时,实数的取值范围是.故选D.11、B【答案解析】根据函数图象的平移变换公式求出函数的解析式,再利用正弦函数的对称性、单调区间等相关性质求解即可.【题目详解】因为f(x)=sin 3x-cos 3x+1=2sin(3x-)+1,由图象的平移变换公式知,函数g(x)=2sin3(x+)-+1=2sin(3x+)+1,
13、其最小正周期为,故正确;令3x+=k+,得x=+(kZ),所以x=不是对称轴,故错误;令3x+=k,得x=-(kZ),取k=2,得x=,故函数g(x)的图象关于点(,1)对称,故正确;令2k-3x+2k+,kZ,得-x+,取k=2,得x,取k=3,得x,故错误;故选:B【答案点睛】本题考查图象的平移变换和正弦函数的对称性、单调性和最小正周期等性质;考查运算求解能力和整体代换思想;熟练掌握正弦函数的对称性、单调性和最小正周期等相关性质是求解本题的关键;属于中档题、常考题型12、C【答案解析】直接求交集得到答案.【题目详解】集合,则.故选:.【答案点睛】本题考查了交集运算,属于简单题.二、填空题:
14、本题共4小题,每小题5分,共20分。13、答案不唯一,如【答案解析】根据对基本函数的理解可得到满足条件的函数.【题目详解】由题意,不妨设,则在都成立,但是在是单调递增的,在是单调递减的,说明原命题是假命题.所以本题答案为,答案不唯一,符合条件即可.【答案点睛】本题考查对基本初等函数的图像和性质的理解,关键是假设出一个在上不是单调递减的函数,再检验是否满足命题中的条件,属基础题.14、【答案解析】利用正弦定理边化角可得,从而可得,进而求解.【题目详解】由,由正弦定理可得,即,整理可得,又因为,所以,因为,所以,故答案为:【答案点睛】本题主要考查了正弦定理解三角形、两角和的正弦公式,属于基础题.15、【答案解析】分类讨论,时不合题意;时求导,求出函数的单调区间,得到在上的最小值,利用不等式恒成立转化为函数