收藏 分享(赏)

2023年高三数学14分突破一轮复习必备精品1高中数学2.docx

上传人:sc****y 文档编号:1257974 上传时间:2023-04-19 格式:DOCX 页数:44 大小:905.48KB
下载 相关 举报
2023年高三数学14分突破一轮复习必备精品1高中数学2.docx_第1页
第1页 / 共44页
2023年高三数学14分突破一轮复习必备精品1高中数学2.docx_第2页
第2页 / 共44页
2023年高三数学14分突破一轮复习必备精品1高中数学2.docx_第3页
第3页 / 共44页
2023年高三数学14分突破一轮复习必备精品1高中数学2.docx_第4页
第4页 / 共44页
2023年高三数学14分突破一轮复习必备精品1高中数学2.docx_第5页
第5页 / 共44页
2023年高三数学14分突破一轮复习必备精品1高中数学2.docx_第6页
第6页 / 共44页
亲,该文档总共44页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、考纲导读第十章不等式1理解不等式的性质及其证明2掌握两个注意不扩展到三个正数的算术平均数不小于它们的几何平均数定理,并会简单应用3掌握分析法、综合法、比拟法证明简单的不等式4掌握简单不等式的解法5理解不等式| a | b| | ab | a | b |实数的性质不等式的性质均值不等式不等式的证明解不等式不等式的应用比拟法综合法分析法反证法换元法放缩法判别式法一元一次不等式(组)一元二次不等式分式、高次不等式含绝对值不等式函数性质的讨论方程根的分布最值问题实际应用问题取值范围问题知识网络高考导航不等式局部的内容是高考较为稳定的一个热点,考查的重点是不等式的性质、证明、解法及最值方面的应用高考试题

2、中有以下几个明显的特点:1不等式与函数、方程、三角、数列、几何、导数、实际应用等有关内容综合在一起的综合试题多,单独考查不等式的问题很少,尤其是不等式的证明题2选择题,填空题和解答题三种题型中均有各种类型不等式题,特别是应用题和综合题几乎都与不等式有关3不等式的证明考得比拟频繁,所涉及的方法主要是比拟法、综合法和分析法,而放缩法作为一种辅助方法不容无视根底过关第1课时 不等式的概念和性质1、实数的大小比拟法那么:设a,bR,那么ab ;ab ;ab 定理2同向传递性 ab,bc 定理3 abac bc推论 ab,cd 定理4 ab,c0 ab,cb0,cd0 推论2 ab0 (nN且n1)定理

3、5 ab0 (nN且n1)典型例题例1. 设f(x)1logx3,g(x)2logx2,其中x0,x1比拟f(x)与g(x)的大小.解:(1)(x2y2)(xy)(x2y2)(xy)(2)aabbabba变式训练1:不等式log2x+3x21的解集是_.答案:x|x3且x1,x0。解析:或。 例2. 设f(x)1logx3,g(x)2logx2,其中x0,x1比拟f(x)与g(x)的大小.解:当0x1或x时,f(x)g(x);当1x时,f(x)g(x);当x时,f(x)g(x).变式训练2:假设不等式(1)na2对于任意正整数n恒成立,那么实数a的取值范围是 .例3. 函数ax2bx满足:12

4、,24,求的取值范围解:由f (x)ax2bx得 f (1)ab,f (1)ab,f (2)4a2b af (1)f(1),bf (1)f(1) 那么f(2)2f (1)f (1)f (1)f (1)3f (1)f (1)由条件1f(1)2,2f (1)4可得3123f(1)f(1)324得f (2)的取值范围是5f (2)10.变式训练3:假设13,42,那么|的取值范围是 .解: (3,3)例4. 函数f (x)x2axb,当p、q满足pq1时,试证明:pf (x)qf (y)f (pxqy)对于任意实数x、y都成立的充要条件是op1.证明:pf (x)qf (y)f (pxqy)pq(x

5、y)2p(1p)(xy)2充分性:当0p1时,0从而必要性:当时,那么有0,又0,从而0,即0p1综上所述,原命题成立变式训练4:abc,abc0,方程ax2bxc0的两个实数根为x1、x2(1)证明:1;(2)假设xx1x2x1,求xx1x2x;(3)求| xx|解:(1)abc,abc0,3aabc,abab,a0,1 (2)方法1abc0 ax2bxc0有一根为1,不妨设x11,那么由可得而,x21, (方法2)由,(3)由(2)知, ,归纳小结 1不等式的性质是证明不等式与解不等式的重要而又根本的依据,必须要正确、熟练地掌握,要弄清每一性质的条件和结论注意条件的放宽和加强,条件和结论之

6、间的相互联系2使用“作差比拟,其变形之一是将差式因式分解,然后根据各个因式的符号判断差式的符号;变形之二是将差式变成非负数或非正数之和,然后判断差式的符号3关于数(式)比拟大小,应该将“相等与“不等分开加以说明,不要笼统地写成“AB(或BA)根底过关第2课时 算术平均数与几何平均数1a0,b0时,称 为a,b的算术平均数;称 为a,b的几何平均数2定理1 如果a、bR,那么a2b2 2ab当且仅当 时 取“号3定理2 如果a、b,那么 当且仅当ab时取“号即两个数的算术平均数不小于它们的几何平均数4x、y,xyP,xyS. 有以下命题:(1) 如果S是定值,那么当且仅当xy时,xy有最小值 (

7、2) 如果P是定值,那么当且仅当xy时,xy有最大值 典型例题例1设a、bR,试比拟,的大小 解:a、bR+,2即,当且仅当ab时等号成立又 当且仅当ab时等号成立 而于是(当且仅当ab时取“号)说明:题中的、分别叫做正数的调和平均数,几何平均数,算术平均数,平方平均数也可取特殊值,得出它们的大小关系,然后再证明变式训练1:1设,命题;命题,那么是成立的 A必要不充分条件 B充分不必要条件C充分必要条件 D既不充分也不必要条件解:B.解析: 是等号成立的条件2假设为ABC的三条边,且,那么 A B C D解:D解析:,又。3设x 0, y 0, , a 与b的大小关系 Aa b Ba 0那么盐

8、水就变咸了,试根据这一事实提炼一个不等式 .解: 解析:由盐的浓度变大得例2. a,b,x,yR+a,b为常数,求xy的最小值.解: ab2变式训练2:a,b,x,yR+a,b为常数,ab10, ,假设 xy的最小值为18,求a,b的值解:或例3. a, b都是正数,并且a b,求证:a5 + b5 a2b3 + a3b2解:证:(a5 + b5 ) - (a2b3 + a3b2) = ( a5 - a3b2) + (b5 - a2b3 ) = a3 (a2 - b2 ) - b3 (a2 - b2) = (a2 - b2 ) (a3 - b3)= (a + b)(a - b)2(a2 + a

9、b + b2)a, b都是正数,a + b, a2 + ab + b2 0又a b,(a - b)2 0 (a + b)(a - b)2(a2 + ab + b2) 0即:a5 + b5 a2b3 + a3b2变式训练3:比拟以下两个数的大小:1 2;3从以上两小项的结论中,你否得出更一般的结论?并加以证明解:1,23一般结论:假设成立证明 欲证成立只需证也就是 从而x成立,故 例4. 甲、乙两地相距S千米,汽车从甲地匀速行驶到乙地,速度最大不得超过c千米/小时汽车每小时的运输本钱元由可变局部与固定局部组成可变局部与速度v千米/小时的平方成正比,且比例系数为正常数b;固定局部为a元(1) 试将

10、全程运输本钱Y(元)表示成速度V(千米/小时)的函数.(2) 为使全程运输本钱最省,汽车应以多大速度行驶?解: (1) 依题意得,汽车从甲地匀速行驶到乙地所用时间为,全程运输本钱为yabv2s(bv),故所求函数及其定义域为ys(bv)v(0,c)(2) s、a、b、vR+,故s(bv)2s 当且仅当bv时取等号,此时v假设c即v时,全程运输本钱最小假设c,那么当v(0,c)时,ys(bv)s(bc)(cv)(abcv)cv0,且abc,故有abcvabc20 s(bv)s(bc),且仅当vc时取等号,即vc时全程运输本钱最小变式训练4:为了通过计算机进行较大规模的计算,人们目前普遍采用以下两

11、种方法:第一种传统方法是建造一台超级计算机此种方法在过去曾被普遍采用但是人们逐渐发现建造单独的超级计算机并不合算,因为它的运算能力和本钱的平方根成正比另一种比拟新的技术是建造分布式计算机系统它是通过大量使用低性能计算机(也叫工作站)组成一个计算网络这样的网络具有惊人的计算能力,因为整个网络的计算能力是各个工作站的效能之和假设计算机的计算能力的单位是MIPS(即每秒执行百万条指令的次数),一台运算能力为6000MIPS的传统巨型机的本钱为100万元;而在分布式系统中,每个工作站的运算能力为300MIPS,其价格仅为5万元需要说明的是,建造分布式计算系统需要较高的技术水平,初期的科技研发及网络建设费用约为600万元请问:在投入费用为多少的时候,建造新型的分布式计算系统更合算?解:设投入的资金为万元,两种方法所能到达的计算能力为MIPS,那么把,代入上式得,又,当时,代入上式得,由得,即0,解得900(万元)答:在投入费用为900万元以上时,建造新型的分布式计算系统更合算。归纳小结小结归纳1在应用两个定理时,必须熟悉它们的常用变形,同时注意它们成立的条件2在使用“和为常数、积有最大值和“积为常数、和有最小值这两个结论时,必须注意三点:

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 资格与职业考试 > 其它

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2