1、2023学年高考数学模拟测试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,若,则等于( )A3B4C5D62正四棱锥的五个顶点在同一个球面上,它的底面边长为,侧棱长为,则它的外接球的表面积为( )ABCD3已知集合,则的子集共有( )A个B个C个D个4已知
2、双曲线的渐近线方程为,且其右焦点为,则双曲线的方程为( )ABCD5复数的共轭复数记作,已知复数对应复平面上的点,复数:满足.则等于( )ABCD6用一个平面去截正方体,则截面不可能是( )A正三角形B正方形C正五边形D正六边形7已知(i为虚数单位,),则ab等于( )A2B-2CD82019年10月1日,中华人民共和国成立70周年,举国同庆.将2,0,1,9,10这5个数字按照任意次序排成一行,拼成一个6位数,则产生的不同的6位数的个数为A96B84C120D3609设双曲线(a0,b0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线交于点D
3、若D到直线BC的距离小于,则该双曲线的渐近线斜率的取值范围是 ( )ABCD10设函数,则函数的图像可能为( )ABCD11已知为等差数列,若,则( )A1B2C3D612执行如图所示的程序框图,若输入,则输出的值为( )A0B1CD二、填空题:本题共4小题,每小题5分,共20分。13双曲线的焦点坐标是_,渐近线方程是_.14在直角坐标系中,直线的参数方程为(为参数),曲线的参数方程为(为参数).(1)求直线和曲线的普通方程;(2)设为曲线上的动点,求点到直线距离的最小值及此时点的坐标.15某几何体的三视图如图所示(单位:),则该几何体的体积是_;最长棱的长度是_16在矩形中,为的中点,将和分
4、别沿,翻折,使点与重合于点.若,则三棱锥的外接球的表面积为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)为提供市民的健身素质,某市把四个篮球馆全部转为免费民用(1)在一次全民健身活动中,四个篮球馆的使用场数如图,用分层抽样的方法从四场馆的使用场数中依次抽取共25场,在中随机取两数,求这两数和的分布列和数学期望;(2)设四个篮球馆一个月内各馆使用次数之和为,其相应维修费用为元,根据统计,得到如下表的数据:x10152025303540y100001176113010139801477115440160202.993.494.054.504.995.495.99用
5、最小二乘法求与的回归直线方程;叫做篮球馆月惠值,根据的结论,试估计这四个篮球馆月惠值最大时的值参考数据和公式:,18(12分)设函数.(1)时,求的单调区间;(2)当时,设的最小值为,若恒成立,求实数t的取值范围.19(12分)在直角坐标系中,圆的参数方程为:(为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,且长度单位相同.(1)求圆的极坐标方程;(2)若直线:(为参数)被圆截得的弦长为,求直线的倾斜角.20(12分)在直角坐标系xOy中,直线的参数方程为(t为参数,)以坐标原点 为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C的极坐标方程为(l)求直线的普通方程和曲线C的直角坐
6、标方程:(2)若直线与曲线C相交于A,B两点,且求直线 的方程21(12分)记无穷数列的前项中最大值为,最小值为,令,则称是“极差数列”.(1)若,求的前项和;(2)证明:的“极差数列”仍是;(3)求证:若数列是等差数列,则数列也是等差数列.22(10分)已知.(1)解不等式;(2)若均为正数,且,求的最小值.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】先求出,再由,利用向量数量积等于0,从而求得.【题目详解】由题可知,因为,所以有,得,故选:C.【答案点睛】该题考查的是有关
7、向量的问题,涉及到的知识点有向量的减法坐标运算公式,向量垂直的坐标表示,属于基础题目.2、C【答案解析】如图所示,在平面的投影为正方形的中心,故球心在上,计算长度,设球半径为,则,解得,得到答案.【题目详解】如图所示:在平面的投影为正方形的中心,故球心在上,故,设球半径为,则,解得,故.故选:.【答案点睛】本题考查了四棱锥的外接球问题,意在考查学生的空间想象能力和计算能力.3、B【答案解析】根据集合中的元素,可得集合,然后根据交集的概念,可得,最后根据子集的概念,利用计算,可得结果.【题目详解】由题可知:,当时,当时,当时,当时,所以集合则所以的子集共有故选:B【答案点睛】本题考查集合的运算以
8、及集合子集个数的计算,当集合中有元素时,集合子集的个数为,真子集个数为,非空子集为,非空真子集为,属基础题.4、B【答案解析】试题分析:由题意得,所以,所求双曲线方程为考点:双曲线方程.5、A【答案解析】根据复数的几何意义得出复数,进而得出,由得出可计算出,由此可计算出.【题目详解】由于复数对应复平面上的点,则,因此,.故选:A.【答案点睛】本题考查复数模的计算,考查了复数的坐标表示、共轭复数以及复数的除法,考查计算能力,属于基础题.6、C【答案解析】试题分析:画出截面图形如图显然A正三角形,B正方形:D正六边形,可以画出五边形但不是正五边形;故选C考点:平面的基本性质及推论7、A【答案解析】
9、利用复数代数形式的乘除运算化简,再由复数相等的条件列式求解【题目详解】,得,故选:【答案点睛】本题考查复数代数形式的乘除运算,考查复数相等的条件,意在考查学生对这些知识的理解掌握水平,是基础题8、B【答案解析】2,0,1,9,10按照任意次序排成一行,得所有不以0开头的排列数共个,其中含有2个10的排列数共个,所以产生的不同的6位数的个数为.故选B9、A【答案解析】由题意,根据双曲线的对称性知在轴上,设,则由得:,因为到直线的距离小于,所以,即,所以双曲线渐近线斜率,故选A10、B【答案解析】根据函数为偶函数排除,再计算排除得到答案.【题目详解】定义域为: ,函数为偶函数,排除 ,排除 故选【
10、答案点睛】本题考查了函数图像,通过函数的单调性,奇偶性,特殊值排除选项是常用的技巧.11、B【答案解析】利用等差数列的通项公式列出方程组,求出首项和公差,由此能求出【题目详解】an为等差数列,,,解得10,d3,+4d10+111故选:B【答案点睛】本题考查等差数列通项公式求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题12、A【答案解析】根据输入的值大小关系,代入程序框图即可求解.【题目详解】输入,因为,所以由程序框图知,输出的值为.故选:A【答案点睛】本题考查了对数式大小比较,条件程序框图的简单应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、 【答案解
11、析】通过双曲线的标准方程,求解,即可得到所求的结果【题目详解】由双曲线,可得,则,所以双曲线的焦点坐标是,渐近线方程为:故答案为:;【答案点睛】本题主要考查了双曲线的简单性质的应用,考查了运算能力,属于容易题14、(1),;(2),.【答案解析】(1)利用代入消参的方法即可将两个参数方程转化为普通方程;(2)利用参数方程,结合点到直线的距离公式,将问题转化为求解二次函数最值的问题,即可求得.【题目详解】(1)直线的普通方程为.在曲线的参数方程中,所以曲线的普通方程为.(2)设点.点到直线的距离.当时,所以点到直线的距离的最小值为.此时点的坐标为.【答案点睛】本题考查将参数方程转化为普通方程,以
12、及利用参数方程求距离的最值问题,属中档题.15、 【答案解析】由三视图还原原几何体,该几何体为四棱锥,底面为直角梯形,侧棱底面,由棱锥体积公式求棱锥体积,由勾股定理求最长棱的长度【题目详解】由三视图还原原几何体如下图所示:该几何体为四棱锥,底面为直角梯形,侧棱底面,则该几何体的体积为,因此,该棱锥的最长棱的长度为.故答案为:;.【答案点睛】本题考查由三视图求体积、棱长,关键是由三视图还原原几何体,是中档题16、.【答案解析】计算外接圆的半径,并假设外接球的半径为R,可得球心在过外接圆圆心且垂直圆面的垂线上,然后根据面,即可得解.【题目详解】由题意可知,所以可得面,设外接圆的半径为,由正弦定理可
13、得,即,设三棱锥外接球的半径,因为外接球的球心为过底面圆心垂直于底面的直线与中截面的交点,则,所以外接球的表面积为.故答案为:.【答案点睛】本题考查三棱锥的外接球的应用,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析,12.5(2)20【答案解析】(1) 运用分层抽样,结合总场次为100,可求得的值,再运用古典概型的概率计算公式可求解果;(2) 由公式可计算的值,进而可求与的回归直线方程;求出,再对函数求导,结合单调性,可估计这四个篮球馆月惠值最大时的值.【题目详解】解:(1)抽样比为,所以分别是,6,7,8,5所以两数之和所有可能取值是:10,12,13,15,所以分布列为期望为(2)因为所以,;,设,所以当递增,当递减所以约惠值最大值时的值为20【答案点睛】本题考查直方图的实际应用,涉及求概率,平均数、拟合直线和导数等问题,关键是要读懂题意,属于中档题.18、(1)的增区间为,减区间为;(2).【答案解析】(1)求出函数的导数,由于参数的范围对导数的符号有影响,对参数分类,再研究函数的单调区间;(2)由(1)的结论,求出的表达式,由于恒成立,故求出的最大值,即得实数的取值范围的左端点【题目详解】解:(1)解:, 当时,解得的增区间为,解得的减区间为. (2)解: