收藏 分享(赏)

2023学年泰安市重点中学高三六校第一次联考数学试卷(含解析).doc

上传人:sc****y 文档编号:12641 上传时间:2023-01-06 格式:DOC 页数:22 大小:2.76MB
下载 相关 举报
2023学年泰安市重点中学高三六校第一次联考数学试卷(含解析).doc_第1页
第1页 / 共22页
2023学年泰安市重点中学高三六校第一次联考数学试卷(含解析).doc_第2页
第2页 / 共22页
2023学年泰安市重点中学高三六校第一次联考数学试卷(含解析).doc_第3页
第3页 / 共22页
2023学年泰安市重点中学高三六校第一次联考数学试卷(含解析).doc_第4页
第4页 / 共22页
2023学年泰安市重点中学高三六校第一次联考数学试卷(含解析).doc_第5页
第5页 / 共22页
2023学年泰安市重点中学高三六校第一次联考数学试卷(含解析).doc_第6页
第6页 / 共22页
亲,该文档总共22页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,若恒成立,则满足条件的的个数为( )A0B1C2D32设复数,则=( )A1BCD3已知函数(,且)在区间上的值域为,则( )ABC或D或44已知x,y满足不等式,且目标函数z

2、9x+6y最大值的变化范围20,22,则t的取值范围( )A2,4B4,6C5,8D6,75已知函数,若关于的方程恰好有3个不相等的实数根,则实数的取值范围为( )ABCD6设分别是双线的左、右焦点,为坐标原点,以为直径的圆与该双曲线的两条渐近线分别交于两点(位于轴右侧),且四边形为菱形,则该双曲线的渐近线方程为( )ABCD7已知双曲线的两条渐近线与抛物线的准线分别交于点、,O为坐标原点若双曲线的离心率为2,三角形AOB的面积为,则p=( )A1BC2D38设等差数列的前n项和为,若,则( )ABC7D29已知函数的图象的一条对称轴为,将函数的图象向右平行移动个单位长度后得到函数图象,则函数

3、的解析式为( )ABCD10一辆邮车从地往地运送邮件,沿途共有地,依次记为,(为地,为地)从地出发时,装上发往后面地的邮件各1件,到达后面各地后卸下前面各地发往该地的邮件,同时装上该地发往后面各地的邮件各1件,记该邮车到达,各地装卸完毕后剩余的邮件数记为则的表达式为( )ABCD11如图,在平面四边形中,满足,且,沿着把折起,使点到达点的位置,且使,则三棱锥体积的最大值为( )A12BCD12已知复数z满足iz2+i,则z的共轭复数是()A12iB1+2iC12iD1+2i二、填空题:本题共4小题,每小题5分,共20分。13曲线在点处的切线方程为_.14已知双曲线的左、右焦点分别为为双曲线上任

4、一点,且的最小值为,则该双曲线的离心率是_.15如图,在等腰三角形中,已知,分别是边上的点,且,其中且,若线段的中点分别为,则的最小值是_. 16已知数列为等差数列,数列为等比数列,满足,其中,则的值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图所示,三棱柱中,平面,点,分别在线段,上,且,是线段的中点.()求证:平面;()若,求直线与平面所成角的正弦值.18(12分)在多面体中,四边形是正方形,平面,为的中点.(1)求证:;(2)求平面与平面所成角的正弦值.19(12分)已知,.(1)解不等式;(2)若方程有三个解,求实数的取值范围.20(12分)已知函

5、数(1)当时,求不等式的解集;(2)的图象与两坐标轴的交点分别为,若三角形的面积大于,求参数的取值范围.21(12分)已知函数.(1)当时,求不等式的解集;(2)若的解集包含,求的取值范围.22(10分)在; 这三个条件中任选一个,补充在下面问题中的横线上,并解答相应的问题.在中,内角A,B,C的对边分别为a,b,c,且满足_,求的面积.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】由不等式恒成立问题分类讨论:当,当,当,考查方程的解的个数,综合得解【题目详解】当时,满足题意,

6、当时,故不恒成立,当时,设,令,得,得,下面考查方程的解的个数,设(a),则(a)由导数的应用可得:(a)在为减函数,在,为增函数,则(a),即有一解,又,均为增函数,所以存在1个使得成立,综合得:满足条件的的个数是2个,故选:【答案点睛】本题考查了不等式恒成立问题及利用导数研究函数的解得个数,重点考查了分类讨论的数学思想方法,属难度较大的题型.2、A【答案解析】根据复数的除法运算,代入化简即可求解.【题目详解】复数,则故选:A.【答案点睛】本题考查了复数的除法运算与化简求值,属于基础题.3、C【答案解析】对a进行分类讨论,结合指数函数的单调性及值域求解.【题目详解】分析知,.讨论:当时,所以

7、,所以;当时,所以,所以.综上,或,故选C.【答案点睛】本题主要考查指数函数的值域问题,指数函数的值域一般是利用单调性求解,侧重考查数学运算和数学抽象的核心素养.4、B【答案解析】作出可行域,对t进行分类讨论分析目标函数的最大值,即可求解.【题目详解】画出不等式组所表示的可行域如图AOB当t2时,可行域即为如图中的OAM,此时目标函数z9x+6y 在A(2,0)取得最大值Z18不符合题意t2时可知目标函数Z9x+6y在的交点()处取得最大值,此时Zt+16由题意可得,20t+1622解可得4t6故选:B【答案点睛】此题考查线性规划,根据可行域结合目标函数的最大值的取值范围求参数的取值范围,涉及

8、分类讨论思想,关键在于熟练掌握截距型目标函数的最大值最优解的处理办法.5、D【答案解析】讨论,三种情况,求导得到单调区间,画出函数图像,根据图像得到答案.【题目详解】当时,故,函数在上单调递增,在上单调递减,且;当时,;当时,函数单调递减;如图所示画出函数图像,则,故.故选:.【答案点睛】本题考查了利用导数求函数的零点问题,意在考查学生的计算能力和应用能力.6、B【答案解析】由于四边形为菱形,且,所以为等边三角形,从而可得渐近线的倾斜角,求出其斜率.【题目详解】如图,因为四边形为菱形,所以为等边三角形,两渐近线的斜率分别为和.故选:B【答案点睛】此题考查的是求双曲线的渐近线方程,利用了数形结合

9、的思想,属于基础题.7、C【答案解析】试题分析:抛物线的准线为,双曲线的离心率为2,则,渐近线方程为,求出交点,则;选C考点:1.双曲线的渐近线和离心率;2.抛物线的准线方程;8、B【答案解析】根据等差数列的性质并结合已知可求出,再利用等差数列性质可得,即可求出结果【题目详解】因为,所以,所以,所以,故选:B【答案点睛】本题主要考查等差数列的性质及前项和公式,属于基础题9、C【答案解析】根据辅助角公式化简三角函数式,结合为函数的一条对称轴可求得,代入辅助角公式得的解析式.根据三角函数图像平移变换,即可求得函数的解析式.【题目详解】函数,由辅助角公式化简可得,因为为函数图象的一条对称轴,代入可得

10、,即,化简可解得,即,所以将函数的图象向右平行移动个单位长度可得,则,故选:C.【答案点睛】本题考查了辅助角化简三角函数式的应用,三角函数对称轴的应用,三角函数图像平移变换的应用,属于中档题.10、D【答案解析】根据题意,分析该邮车到第站时,一共装上的邮件和卸下的邮件数目,进而计算可得答案【题目详解】解:根据题意,该邮车到第站时,一共装上了件邮件,需要卸下件邮件,则,故选:D【答案点睛】本题主要考查数列递推公式的应用,属于中档题11、C【答案解析】过作于,连接,易知,从而可证平面,进而可知,当最大时,取得最大值,取的中点,可得,再由,求出的最大值即可.【题目详解】在和中,所以,则,过作于,连接

11、,显然,则,且,又因为,所以平面,所以,当最大时,取得最大值,取的中点,则,所以,因为,所以点在以为焦点的椭圆上(不在左右顶点),其中长轴长为10,焦距长为8,所以的最大值为椭圆的短轴长的一半,故最大值为,所以最大值为,故的最大值为.故选:C.【答案点睛】本题考查三棱锥体积的最大值,考查学生的空间想象能力与计算求解能力,属于中档题.12、D【答案解析】两边同乘-i,化简即可得出答案【题目详解】iz2+i两边同乘-i得z=1-2i,共轭复数为1+2i,选D.【答案点睛】的共轭复数为二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】求导,得到和,利用点斜式即可求得结果.【题目详解】

12、由于,所以,由点斜式可得切线方程为.故答案为:.【答案点睛】本题考查利用导数的几何意义求切线方程,属基础题.14、【答案解析】根据双曲线方程,设及,将代入双曲线方程并化简可得,由题意的最小值为,结合平面向量数量积的坐标运算化简,即可求得的值,进而求得离心率即可.【题目详解】设点,则,即,当时,等号成立,.故答案为:.【答案点睛】本题考查了双曲线与向量的综合应用,由平面向量数量积的最值求离心率,属于中档题.15、【答案解析】根据条件及向量数量积运算求得,连接,由三角形中线的性质表示出.根据向量的线性运算及数量积公式表示出,结合二次函数性质即可求得最小值.【题目详解】根据题意,连接,如下图所示:在

13、等腰三角形中,已知,则由向量数量积运算可知线段的中点分别为则由向量减法的线性运算可得所以因为,代入化简可得因为所以当时, 取得最小值因而故答案为: 【答案点睛】本题考查了平面向量数量积的综合应用,向量的线性运算及模的求法,二次函数最值的应用,属于中档题.16、【答案解析】根据题意,判断出,根据等比数列的性质可得,再令数列中的,根据等差数列的性质,列出等式,求出和的值即可.【题目详解】解:由,其中,可得,则,令,可得.又令数列中的,根据等差数列的性质,可得,所以.根据得出,.所以.故答案为.【答案点睛】本题主要考查等差数列、等比数列的性质,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、()证明见详解;().【答案解析】()取中点为,根据几何关系,求证四边形为平行四边形,即可由线线平行推证线面平行;()以为坐标原点,建立空间直角坐标系,求得直线的方向向量和平面的法向量,即可求得线面角的正弦值.【题目详解】()取的中点,连接,.如下图所示:因为,分别是线段和的中点,所以是梯形的中位线,所以.又,所以.因为,所以四边形为平行四边形,所以.所以,.所以四边形为平行四边形,所以.又平面,平面,所以平面.()因为,且平面,故可以为原

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 考试真题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2