1、2023学年高考数学模拟测试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合,则为( )A0,2)B(2,3C2,3D(0,22某几何体的三视图如图所示(单位:cm),则该几何体的表面积
2、是( )ABCD3如图,圆锥底面半径为,体积为,、是底面圆的两条互相垂直的直径,是母线的中点,已知过与的平面与圆锥侧面的交线是以为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点的距离等于( )AB1CD4已知集合,则等于( )ABCD5设全集,集合,则( )ABCD6已知函数,集合,则( )ABCD7将函数向左平移个单位,得到的图象,则满足( )A图象关于点对称,在区间上为增函数B函数最大值为2,图象关于点对称C图象关于直线对称,在上的最小值为1D最小正周期为,在有两个根8射线测厚技术原理公式为,其中分别为射线穿过被测物前后的强度,是自然对数的底数,为被测物厚度,为被测物的密度,是被测物对射
3、线的吸收系数.工业上通常用镅241()低能射线测量钢板的厚度.若这种射线对钢板的半价层厚度为0.8,钢的密度为7.6,则这种射线的吸收系数为( )(注:半价层厚度是指将已知射线强度减弱为一半的某种物质厚度,结果精确到0.001)A0.110B0.112CD9若函数满足,且,则的最小值是( )ABCD10已知命题:R,;命题 :R,则下列命题中为真命题的是( )ABCD11已知函数,若方程恰有两个不同实根,则正数m的取值范围为( )ABCD12已知点是抛物线的对称轴与准线的交点,点为抛物线的焦点,点在抛物线上且满足,若取得最大值时,点恰好在以为焦点的椭圆上,则椭圆的离心率为( )ABCD二、填空
4、题:本题共4小题,每小题5分,共20分。13的展开式中,若的奇数次幂的项的系数之和为32,则_14已知复数,其中为虚数单位,若复数为纯虚数,则实数的值是_15已知集合,.若,则实数a的值是_.16在一次医疗救助活动中,需要从A医院某科室的6名男医生、4名女医生中分别抽调3名男医生、2名女医生,且男医生中唯一的主任医师必须参加,则不同的选派案共有_种.(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在直角坐标系中,曲线的参数方程为(为参数).以为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为(),将曲线向左平移2个单位长度得到曲线.(1)求曲线的
5、普通方程和极坐标方程;(2)设直线与曲线交于两点,求的取值范围.18(12分)如图,在四棱锥中,底面是菱形,是边长为2的正三角形,为线段的中点(1)求证:平面平面;(2)若为线段上一点,当二面角的余弦值为时,求三棱锥的体积19(12分)在平面直角坐标系中,为直线上动点,过点作抛物线:的两条切线,切点分别为,为的中点.(1)证明:轴;(2)直线是否恒过定点?若是,求出这个定点的坐标;若不是,请说明理由.20(12分)在直角坐标系中,曲线的参数方程为(为参数).点在曲线上,点满足.(1)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求动点的轨迹的极坐标方程;(2)点,分别是曲线上第一象限,第二象
6、限上两点,且满足,求的值.21(12分)已知数列满足对任意都有,其前项和为,且是与的等比中项,(1)求数列的通项公式;(2)已知数列满足,设数列的前项和为,求大于的最小的正整数的值22(10分)已知中,内角所对边分别是其中.(1)若角为锐角,且,求的值;(2)设,求的取值范围.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】先求出,得到,再结合集合交集的运算,即可求解.【题目详解】由题意,集合,所以,则,所以.故选:B.【答案点睛】本题主要考查了集合的混合运算,其中解答中熟记集合
7、的交集、补集的定义及运算是解答的关键,着重考查了计算能力,属于基础题.2、D【答案解析】根据三视图判断出几何体为正四棱锥,由此计算出几何体的表面积.【题目详解】根据三视图可知,该几何体为正四棱锥.底面积为.侧面的高为,所以侧面积为.所以该几何体的表面积是.故选:D【答案点睛】本小题主要考查由三视图判断原图,考查锥体表面积的计算,属于基础题.3、D【答案解析】建立平面直角坐标系,求得抛物线的轨迹方程,解直角三角形求得抛物线的焦点到圆锥顶点的距离.【题目详解】将抛物线放入坐标系,如图所示,设抛物线,代入点,可得焦点为,即焦点为中点,设焦点为,.故选:D【答案点睛】本小题考查圆锥曲线的概念,抛物线的
8、性质,两点间的距离等基础知识;考查运算求解能力,空间想象能力,推理论证能力,应用意识.4、C【答案解析】先化简集合A,再与集合B求交集.【题目详解】因为,所以.故选:C【答案点睛】本题主要考查集合的基本运算以及分式不等式的解法,属于基础题.5、B【答案解析】可解出集合,然后进行补集、交集的运算即可【题目详解】,则,因此,.故选:B.【答案点睛】本题考查补集和交集的运算,涉及一元二次不等式的求解,考查运算求解能力,属于基础题.6、C【答案解析】分别求解不等式得到集合,再利用集合的交集定义求解即可.【题目详解】,,故选C【答案点睛】本题主要考查了集合的基本运算,难度容易.7、C【答案解析】由辅助角
9、公式化简三角函数式,结合三角函数图象平移变换即可求得的解析式,结合正弦函数的图象与性质即可判断各选项.【题目详解】函数,则,将向左平移个单位,可得,由正弦函数的性质可知,的对称中心满足,解得,所以A、B选项中的对称中心错误;对于C,的对称轴满足,解得,所以图象关于直线对称;当时,由正弦函数性质可知,所以在上的最小值为1,所以C正确;对于D,最小正周期为,当,由正弦函数的图象与性质可知,时仅有一个解为,所以D错误;综上可知,正确的为C,故选:C.【答案点睛】本题考查了三角函数式的化简,三角函数图象平移变换,正弦函数图象与性质的综合应用,属于中档题.8、C【答案解析】根据题意知,,代入公式,求出即
10、可.【题目详解】由题意可得,因为,所以,即.所以这种射线的吸收系数为.故选:C【答案点睛】本题主要考查知识的迁移能力,把数学知识与物理知识相融合;重点考查指数型函数,利用指数的相关性质来研究指数型函数的性质,以及解指数型方程;属于中档题.9、A【答案解析】由推导出,且,将所求代数式变形为,利用基本不等式求得的取值范围,再利用函数的单调性可得出其最小值.【题目详解】函数满足,即,即,则,由基本不等式得,当且仅当时,等号成立.,由于函数在区间上为增函数,所以,当时,取得最小值.故选:A.【答案点睛】本题考查代数式最值的计算,涉及对数运算性质、基本不等式以及函数单调性的应用,考查计算能力,属于中等题
11、.10、B【答案解析】根据,可知命题的真假,然后对取值,可得命题 的真假,最后根据真值表,可得结果.【题目详解】对命题:可知,所以R,故命题为假命题命题 :取,可知所以R,故命题为真命题所以为真命题故选:B【答案点睛】本题主要考查对命题真假的判断以及真值表的应用,识记真值表,属基础题.11、D【答案解析】当时,函数周期为,画出函数图像,如图所示,方程两个不同实根,即函数和有图像两个交点,计算,根据图像得到答案.【题目详解】当时,故函数周期为,画出函数图像,如图所示:方程,即,即函数和有两个交点.,故,.根据图像知:.故选:.【答案点睛】本题考查了函数的零点问题,确定函数周期画出函数图像是解题的
12、关键.12、B【答案解析】设,利用两点间的距离公式求出的表达式,结合基本不等式的性质求出的最大值时的点坐标,结合椭圆的定义以及椭圆的离心率公式求解即可.【题目详解】设,因为是抛物线的对称轴与准线的交点,点为抛物线的焦点,所以,则,当时,当时,当且仅当时取等号,此时,点在以为焦点的椭圆上,由椭圆的定义得,所以椭圆的离心率,故选B.【答案点睛】本题主要考查椭圆的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:直接求出,从而求出;构造的齐次式,求出;采用离心率的定义以及圆锥曲线的定义来求解二、填空题:本题共4小题,每小题5分,共20分。13、【答
13、案解析】试题分析:由已知得,故的展开式中x的奇数次幂项分别为,其系数之和为,解得考点:二项式定理14、2【答案解析】由题,得,然后根据纯虚数的定义,即可得到本题答案.【题目详解】由题,得,又复数为纯虚数,所以,解得.故答案为:2【答案点睛】本题主要考查纯虚数定义的应用,属基础题.15、9【答案解析】根据集合交集的定义即得.【题目详解】集合,则a的值是9.故答案为:9【答案点睛】本题考查集合的交集,是基础题.16、【答案解析】首先选派男医生中唯一的主任医师,由题意利用排列组合公式即可确定不同的选派案方法种数.【题目详解】首先选派男医生中唯一的主任医师,然后从名男医生、名女医生中分别抽调2名男医生
14、、名女医生,故选派的方法为:.故答案为【答案点睛】解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)的极坐标方程为,普通方程为;(2)【答案解析】(1)根据三角函数恒等变换可得, ,可得曲线的普通方程,再运用图像的平移得依题意得曲线的普通方程为,利用极坐标与平面直角坐标互化的公式可得方程;(2)法一:将代入曲线的极坐标方程得,运用韦达定理可得,根据,可求得的范围;法二:设直线的参数方程为(为参数,为直线的倾斜角),代入曲线的普通方程得,运用韦达定理可得,根据,可求得的范围;【题目详解】(1), ,即曲线的普通方程为,