1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并
2、交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知等差数列的前项和为,若,则等差数列公差()A2BC3D42某地区教育主管部门为了对该地区模拟考试成进行分析,随机抽取了200分到450分之间的2000名学生的成绩,并根据这2000名学生的成绩画出样本的频率分布直方图,如图所示,则成绩在,内的学生人数为( )A800B1000C1200D16003已知实数,则下列说法正确的是( )ABCD4已知幂函数的图象过点,且,则,的大小关系为( )ABCD5某几何体的三视图如图所示,则此几何体的体积为( )AB1CD6中国古代数学著作孙子算经
3、中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数除以正整数后的余数为,则记为,例如现将该问题以程序框图的算法给出,执行该程序框图,则输出的等于( )ABCD7设是双曲线的左、右焦点,若双曲线右支上存在一点,使(为坐标原点),且,则双曲线的离心率为( )ABCD8函数的图象为C,以下结论中正确的是( )图象C关于直线对称;图象C关于点对称;由y =2sin2x的图象向右平移个单位长度可以得到图象C.ABCD9已知,那么是的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件10执行如图所示的程序框图,则输
4、出的( )A2B3CD11设x、y、z是空间中不同的直线或平面,对下列四种情形:x、y、z均为直线;x、y是直线,z是平面;z是直线,x、y是平面;x、y、z均为平面.其中使“且”为真命题的是( )ABCD12已知的部分图象如图所示,则的表达式是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知抛物线的焦点为,过点且斜率为1的直线交抛物线于两点,若线段的垂直平分线与轴交点的横坐标为,则的值为_.14已知,若,则a的取值范围是_15在平面直角坐标系中,点在曲线:上,且在第四象限内已知曲线在点处的切线为,则实数的值为_16设,则“”是“”的_条件.三、解答题:共70分。解答应写
5、出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)讨论函数f(x)的极值点的个数;(2)若f(x)有两个极值点证明.18(12分)已知函数的定义域为.(1)求实数的取值范围;(2)设实数为的最小值,若实数,满足,求的最小值.19(12分)设函数.(1)当时,求不等式的解集;(2)若不等式恒成立,求实数a的取值范围.20(12分)设函数()的最小值为.(1)求的值;(2)若,为正实数,且,证明:.21(12分)在创建“全国文明卫生城”过程中,运城市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次),通过随机抽样,得到参加问卷调查的人的得分统
6、计结果如表所示:.组别频数(1)由频数分布表可以大致认为,此次问卷调查的得分似为这人得分的平均值(同一组中的数据用该组区间的中点值作代表),利用该正态分布,求;(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案:得分不低于的可以获赠次随机话费,得分低于的可以获赠次随机话费;每次获赠的随机话费和对应的概率为:赠送话费的金额(单位:元)概率现有市民甲参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列与数学期望.附:参考数据与公式:,若,则,22(10分)已知各项均为正数的数列的前项和为,满足,恰为等比数列的前3项(1)求数列,的通项公式;(2)求数列
7、的前项和为;若对均满足,求整数的最大值;(3)是否存在数列满足等式成立,若存在,求出数列的通项公式;若不存在,请说明理由2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】根据等差数列的求和公式即可得出【题目详解】a1=12,S5=90,512+ d=90,解得d=1故选C【答案点睛】本题主要考查了等差数列的求和公式,考查了推理能力与计算能力,属于中档题2、B【答案解析】由图可列方程算得a,然后求出成绩在内的频率,最后根据频数=总数频率可以求得成绩在内的学生人数.【题目详解】由频率和
8、为1,得,解得,所以成绩在内的频率,所以成绩在内的学生人数.故选:B【答案点睛】本题主要考查频率直方图的应用,属基础题.3、C【答案解析】利用不等式性质可判断,利用对数函数和指数函数的单调性判断.【题目详解】解:对于实数, ,不成立对于不成立对于利用对数函数单调递增性质,即可得出对于指数函数单调递减性质,因此不成立 故选:【答案点睛】利用不等式性质比较大小要注意不等式性质成立的前提条件解决此类问题除根据不等式的性质求解外,还经常采用特殊值验证的方法4、A【答案解析】根据题意求得参数,根据对数的运算性质,以及对数函数的单调性即可判断.【题目详解】依题意,得,故,故,则.故选:A.【答案点睛】本题
9、考查利用指数函数和对数函数的单调性比较大小,考查推理论证能力,属基础题.5、C【答案解析】该几何体为三棱锥,其直观图如图所示,体积故选.6、C【答案解析】从21开始,输出的数是除以3余2,除以5余3,满足条件的是23,故选C.7、D【答案解析】利用向量运算可得,即,由为的中位线,得到,所以,再根据双曲线定义即可求得离心率.【题目详解】取的中点,则由得,即;在中,为的中位线,所以,所以;由双曲线定义知,且,所以,解得,故选:D【答案点睛】本题综合考查向量运算与双曲线的相关性质,难度一般.8、B【答案解析】根据三角函数的对称轴、对称中心和图象变换的知识,判断出正确的结论.【题目详解】因为,又,所以
10、正确.,所以正确.将的图象向右平移个单位长度,得,所以错误.所以正确,错误.故选:B【答案点睛】本小题主要考查三角函数的对称轴、对称中心,考查三角函数图象变换,属于基础题.9、B【答案解析】由,可得,解出即可判断出结论【题目详解】解:因为,且,解得是的必要不充分条件故选:【答案点睛】本题考查了向量数量积运算性质、三角函数求值、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题10、B【答案解析】运行程序,依次进行循环,结合判断框,可得输出值.【题目详解】起始阶段有,第一次循环后,第二次循环后,第三次循环后,第四次循环后,所有后面的循环具有周期性,周期为3,当时,再次循环输出的,,此时,循
11、环结束,输出,故选:B【答案点睛】本题主要考查程序框图的相关知识,经过几次循环找出规律是关键,属于基础题型.11、C【答案解析】举反例,如直线x、y、z位于正方体的三条共点棱时用垂直于同一平面的两直线平行判断.用垂直于同一直线的两平面平行判断.举例,如x、y、z位于正方体的三个共点侧面时.【题目详解】当直线x、y、z位于正方体的三条共点棱时,不正确; 因为垂直于同一平面的两直线平行,正确;因为垂直于同一直线的两平面平行,正确;如x、y、z位于正方体的三个共点侧面时, 不正确.故选:C.【答案点睛】此题考查立体几何中线面关系,选择题一般可通过特殊值法进行排除,属于简单题目.12、D【答案解析】由
12、图象求出以及函数的最小正周期的值,利用周期公式可求得的值,然后将点的坐标代入函数的解析式,结合的取值范围求出的值,由此可得出函数的解析式.【题目详解】由图象可得,函数的最小正周期为,.将点代入函数的解析式得,得,则,因此,.故选:D.【答案点睛】本题考查利用图象求三角函数解析式,考查分析问题和解决问题的能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、1【答案解析】设,写出直线方程代入抛物线方程后应用韦达定理求得,由抛物线定义得焦点弦长,求得,再写出的垂直平分线方程,得,从而可得结论【题目详解】抛物线的焦点坐标为,直线的方程为,据得.设,则.线段垂直平分线方程为,令,则,
13、所以,所以.故答案为:1【答案点睛】本题考查抛物线的焦点弦问题,根据抛物线的定义表示出焦点弦长是解题关键14、【答案解析】函数等价为,由二次函数的单调性可得在R上递增,即为,可得a的不等式,解不等式即可得到所求范围【题目详解】,等价为,且时,递增,时,递增,且,在处函数连续,可得在R上递增,即为,可得,解得,即a的取值范围是故答案为:【答案点睛】本题考查分段函数的单调性的判断和运用:解不等式,考查转化思想和运算能力,属于中档题15、【答案解析】先设切点,然后对求导,根据切线方程的斜率求出切点的横坐标,代入原函数求出切点的纵坐标,即可得出切得,最后将切点代入切线方程即可求出实数的值.【题目详解】解:依题意设切点,因为,则,又因为曲线在点处的切线为,解得,又因为点在第四象限内,则,.则又因为点在切线上.所以.所以.故答案为: 【答案点睛】本题考查了导数的几何意义,以及导数的运算法则和已知切线斜率求出切点坐标,本题属于基础题.16、充分必要【答案解析】根据充分条件和必要条件的定义可判断两者之间的条件关系.【题目详解】当时,有,故“”是“”的充分条件.当时,有,故“”是“”的必要条件.故“”是“”的充分必要条件,故答案为:充分必要.【答案点睛】本题考查充分必要条件的判断,可利用定义来判断,也可以根据两个条件构成命题及逆命题的真假来判断,还可以利用两个条件对应的集合的包含关