1、2023学年高考数学模拟测试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合,则元素个数为( )A1B2C3D42已知向量,则向量在向量方向上的投影为( )ABCD3若集合,则( )ABCD4若函数在时取得极值,则( )ABCD5等比数列的前项和为,若,则( )ABCD6某公园新购进盆锦紫苏、盆虞美人、盆郁金香,
2、盆盆栽,现将这盆盆栽摆成一排,要求郁金香不在两边,任两盆锦紫苏不相邻的摆法共( )种ABCD7已知函数,将函数的图象向左平移个单位长度,得到函数的图象,若函数的图象的一条对称轴是,则的最小值为ABCD8已知复数,则对应的点在复平面内位于( )A第一象限B第二象限C第三象限D第四象限9若,则( )ABCD10已知函数,若对于任意的,函数在内都有两个不同的零点,则实数的取值范围为( )ABCD11从装有除颜色外完全相同的3个白球和个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为,已知,则ABCD12已知全集,集合,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知
3、角的终边过点,则_.14已知椭圆:,F1、F2是椭圆的左、右焦点,A为椭圆的上顶点,延长AF2交椭圆于点B,若为等腰三角形,则椭圆的离心率为_.15记实数中的最大数为,最小数为.已知实数且三数能构成三角形的三边长,若,则的取值范围是.16在平面直角坐标系中,曲线上任意一点到直线的距离的最小值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)求函数的单调区间;(2)当时,如果方程有两个不等实根,求实数t的取值范围,并证明.18(12分)已知集合,将的所有子集任意排列,得到一个有序集合组,其中.记集合中元素的个数为,规定空集中元素的个数为.当时,求的值
4、;利用数学归纳法证明:不论为何值,总存在有序集合组,满足任意,都有.19(12分)已知函数.()当时,求函数在上的值域;()若函数在上单调递减,求实数的取值范围.20(12分)已知直线:与抛物线切于点,直线:过定点Q,且抛物线上的点到点Q的距离与其到准线距离之和的最小值为.(1)求抛物线的方程及点的坐标;(2)设直线与抛物线交于(异于点P)两个不同的点A、B,直线PA,PB的斜率分别为,那么是否存在实数,使得?若存在,求出的值;若不存在,请说明理由.21(12分)已知函数(1)已知直线:,:.若直线与关于对称,又函数在处的切线与垂直,求实数的值;(2)若函数,则当,时,求证:;.22(10分)
5、在平面直角坐标系中,直线的参数方程为(为参数,).在以坐标原点为极点、轴的非负半轴为极轴的极坐标系中,曲线的极坐标方程为.(1)若点在直线上,求直线的极坐标方程;(2)已知,若点在直线上,点在曲线上,且的最小值为,求的值.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】作出两集合所表示的点的图象,可得选项.【题目详解】由题意得,集合A表示以原点为圆心,以2为半径的圆,集合B表示函数的图象上的点,作出两集合所表示的点的示意图如下图所示,得出两个图象有两个交点:点A和点B,所以两个集
6、合有两个公共元素,所以元素个数为2,故选:B.【答案点睛】本题考查集合的交集运算,关键在于作出集合所表示的点的图象,再运用数形结合的思想,属于基础题.2、A【答案解析】投影即为,利用数量积运算即可得到结论.【题目详解】设向量与向量的夹角为,由题意,得,所以,向量在向量方向上的投影为.故选:A.【答案点睛】本题主要考察了向量的数量积运算,难度不大,属于基础题.3、B【答案解析】根据正弦函数的性质可得集合A,由集合性质表示形式即可求得,进而可知满足.【题目详解】依题意,;而,故,则.故选:B.【答案点睛】本题考查了集合关系的判断与应用,集合的包含关系与补集关系的应用,属于中档题.4、D【答案解析】
7、对函数求导,根据函数在时取得极值,得到,即可求出结果.【题目详解】因为,所以,又函数在时取得极值,所以,解得.故选D【答案点睛】本题主要考查导数的应用,根据函数的极值求参数的问题,属于常考题型.5、D【答案解析】试题分析:由于在等比数列中,由可得:,又因为,所以有:是方程的二实根,又,所以,故解得:,从而公比;那么,故选D考点:等比数列6、B【答案解析】间接法求解,两盆锦紫苏不相邻,被另3盆隔开有,扣除郁金香在两边有,即可求出结论.【题目详解】使用插空法,先排盆虞美人、盆郁金香有种,然后将盆锦紫苏放入到4个位置中有种,根据分步乘法计数原理有,扣除郁金香在两边,排盆虞美人、盆郁金香有种,再将盆锦
8、紫苏放入到3个位置中有,根据分步计数原理有,所以共有种.故选:B.【答案点睛】本题考查排列应用问题、分步乘法计数原理,不相邻问题插空法是解题的关键,属于中档题.7、C【答案解析】将函数的图象向左平移个单位长度,得到函数的图象,因为函数的图象的一条对称轴是,所以,即,所以,又,所以的最小值为故选C8、A【答案解析】利用复数除法运算化简,由此求得对应点所在象限.【题目详解】依题意,对应点为,在第一象限.故选A.【答案点睛】本小题主要考查复数除法运算,考查复数对应点的坐标所在象限,属于基础题.9、D【答案解析】直接利用二倍角余弦公式与弦化切即可得到结果【题目详解】,故选D【答案点睛】本题考查的知识要
9、点:三角函数关系式的恒等变变换,同角三角函数关系式的应用,主要考查学生的运算能力和转化能力,属于基础题型10、D【答案解析】将原题等价转化为方程在内都有两个不同的根,先求导,可判断时,是增函数;当时,是减函数.因此,再令,求导得,结合韦达定理可知,要满足题意,只能是存在零点,使得在有解,通过导数可判断当时,在上是增函数;当时,在上是减函数;则应满足,再结合,构造函数,求导即可求解;【题目详解】函数在内都有两个不同的零点,等价于方程在内都有两个不同的根.,所以当时,是增函数;当时,是减函数.因此.设,若在无解,则在上是单调函数,不合题意;所以在有解,且易知只能有一个解.设其解为,当时,在上是增函
10、数;当时,在上是减函数.因为,方程在内有两个不同的根,所以,且.由,即,解得.由,即,所以.因为,所以,代入,得.设,所以在上是增函数,而,由可得,得.由在上是增函数,得.综上所述,故选:D.【答案点睛】本题考查由函数零点个数求解参数取值范围问题,构造函数法,导数法研究函数增减性与最值关系,转化与化归能力,属于难题11、B【答案解析】由题意知,由,知,由此能求出【题目详解】由题意知,解得,故选:B【答案点睛】本题考查离散型随机变量的方差的求法,解题时要认真审题,仔细解答,注意二项分布的灵活运用12、D【答案解析】根据函数定义域的求解方法可分别求得集合,由补集和交集定义可求得结果.【题目详解】,
11、.故选:.【答案点睛】本题考查集合运算中的补集和交集运算问题,涉及到函数定义域的求解,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】由题意利用任意角的三角函数的定义,两角和差正弦公式,求得的值【题目详解】解:角的终边过点,故答案为:【答案点睛】本题主要考查任意角的三角函数的定义,两角和差正弦公式,属于基础题14、【答案解析】由题意可得等腰三角形的两条相等的边,设,由题可得的长,在三角形中,三角形中由余弦定理可得的值相等,可得的关系,从而求出椭圆的离心率【题目详解】如图,若为等腰三角形,则|BF1|=|AB|.设|BF2|=t,则|BF1|=2at,所以|AB|=
12、a+t=|BF1|=2at,解得a=2t,即|AB|=|BF1|=3t,|AF1|=2t,设BAO=,则BAF1=2,所以的离心率e=,结合余弦定理,易得在中,所以,即e= =,故答案为:.【答案点睛】此题考查椭圆的定义及余弦定理的简单应用,属于中档题.15、【答案解析】试题分析:显然,又,当时,作出可行区域,因抛物线与直线及在第一象限内的交点分别是(1,1)和,从而当时,作出可行区域,因抛物线与直线及在第一象限内的交点分别是(1,1)和,从而综上所述,的取值范围是考点:不等式、简单线性规划.16、【答案解析】解法一:曲线上任取一点,利用基本不等式可求出该点到直线的距离的最小值;解法二:曲线函
13、数解析式为,由求出切点坐标,再计算出切点到直线的距离即可所求答案.【题目详解】解法一(基本不等式):在曲线上任取一点,该点到直线的距离为,当且仅当时,即当时,等号成立,因此,曲线上任意一点到直线距离的最小值为;解法二(导数法):曲线的函数解析式为,则,设过曲线上任意一点的切线与直线平行,则,解得,当时,到直线的距离;当时,到直线的距离.所以曲线上任意一点到直线的距离的最小值为.故答案为:.【答案点睛】本题考查曲线上一点到直线距离最小值的计算,可转化为利用切线与直线平行来找出切点,转化为切点到直线的距离,也可以设曲线上的动点坐标,利用基本不等式法或函数的最值进行求解,考查分析问题和解决问题的能力
14、,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)当时,的单调递增区间是,单调递减区间是;当时,的单调递增区间是,单调递减区间是;(2),证明见解析.【答案解析】(1)求出,对分类讨论,分别求出的解,即可得出结论;(2)由(1)得出有两解时的范围,以及关系,将,等价转化为证明,不妨设,令,则,即证,构造函数,只要证明对于任意恒成立即可.【题目详解】(1)的定义域为R,且.由,得;由,得.故当时,函数的单调递增区间是,单调递减区间是;当时,函数的单调递增区间是,单调递减区间是.(2)由(1)知当时,且.当时,;当时,.当时,直线与的图像有两个交点,实数t的取值范围是.方程有两个不等实根,即.要证,只需证,即证,不妨设.令,则,则要证,即证.令,则.令,则,在上单