收藏 分享(赏)

2023学年湖南省益阳市资阳区第六中学高三适应性调研考试数学试题(含解析).doc

上传人:g****t 文档编号:12954 上传时间:2023-01-06 格式:DOC 页数:23 大小:2.14MB
下载 相关 举报
2023学年湖南省益阳市资阳区第六中学高三适应性调研考试数学试题(含解析).doc_第1页
第1页 / 共23页
2023学年湖南省益阳市资阳区第六中学高三适应性调研考试数学试题(含解析).doc_第2页
第2页 / 共23页
2023学年湖南省益阳市资阳区第六中学高三适应性调研考试数学试题(含解析).doc_第3页
第3页 / 共23页
2023学年湖南省益阳市资阳区第六中学高三适应性调研考试数学试题(含解析).doc_第4页
第4页 / 共23页
2023学年湖南省益阳市资阳区第六中学高三适应性调研考试数学试题(含解析).doc_第5页
第5页 / 共23页
2023学年湖南省益阳市资阳区第六中学高三适应性调研考试数学试题(含解析).doc_第6页
第6页 / 共23页
亲,该文档总共23页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求

2、的。1集合,则( )ABCD2在棱长为a的正方体中,E、F、M分别是AB、AD、的中点,又P、Q分别在线段、上,且,设平面平面,则下列结论中不成立的是( )A平面BC当时,平面D当m变化时,直线l的位置不变3定义运算,则函数的图象是( )ABCD4如图,在平面四边形ABCD中,若点E为边CD上的动点,则的最小值为 ( )ABCD5方程在区间内的所有解之和等于( )A4B6C8D106设双曲线(,)的一条渐近线与抛物线有且只有一个公共点,且椭圆的焦距为2,则双曲线的标准方程为( )ABCD7集合,则( )ABCD8已知等差数列an,则“a2a1”是“数列an为单调递增数列”的( )A充分而不必要

3、条件B必要而不充分条件C充分必要条件D既不充分也不必要条件9已知实数x,y满足,则的最小值等于( )ABCD10如图1,九章算术中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何? 意思是:有一根竹子, 原高一丈(1丈=10尺), 现被风折断,尖端落在地上,竹尖与竹根的距离三尺,问折断处离地面的高为( )尺. ABCD11下列图形中,不是三棱柱展开图的是( )ABCD12过抛物线的焦点且与的对称轴垂直的直线与交于,两点,为的准线上的一点,则的面积为( )A1B2C4D8二、填空题:本题共4小题,每小题5分,共20分。13在的二项展开式中,所有项的二项式系数之和为256

4、,则_,项的系数等于_.14在中,角的对边分别为,且,若外接圆的半径为,则面积的最大值是_.15为了抗击新型冠状病毒肺炎,某医药公司研究出一种消毒剂,据实验表明,该药物释放量与时间的函数关系为(如图所示),实验表明,当药物释放量对人体无害. (1)_;(2)为了不使人身体受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过_分钟人方可进入房间.16曲线在点(1,1)处的切线与轴及直线=所围成的三角形面积为,则实数=_。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知点到抛物线C:y1=1px准线的距离为1()求C的方程及焦点F的坐标;()设点P关于原点

5、O的对称点为点Q,过点Q作不经过点O的直线与C交于两点A,B,直线PA,PB,分别交x轴于M,N两点,求的值18(12分)已知椭圆:()的离心率为,且椭圆的一个焦点与抛物线的焦点重合.过点的直线交椭圆于,两点,为坐标原点.(1)若直线过椭圆的上顶点,求的面积;(2)若,分别为椭圆的左、右顶点,直线,的斜率分别为,求的值.19(12分)设函数,其中,为正实数.(1)若的图象总在函数的图象的下方,求实数的取值范围;(2)设,证明:对任意,都有.20(12分)如图,四边形中,沿对角线将翻折成,使得. (1)证明:;(2)求直线与平面所成角的正弦值.21(12分)为了拓展城市的旅游业,实现不同市区间的

6、物资交流,政府决定在市与市之间建一条直达公路,中间设有至少8个的偶数个十字路口,记为,现规划在每个路口处种植一颗杨树或者木棉树,且种植每种树木的概率均为.(1)现征求两市居民的种植意见,看看哪一种植物更受欢迎,得到的数据如下所示:A市居民B市居民喜欢杨树300200喜欢木棉树250250是否有的把握认为喜欢树木的种类与居民所在的城市具有相关性;(2)若从所有的路口中随机抽取4个路口,恰有个路口种植杨树,求的分布列以及数学期望;(3)在所有的路口种植完成后,选取3个种植同一种树的路口,记总的选取方法数为,求证:.附:0.1000.0500.0100.0012.7063.8416.63510.82

7、822(10分)已知点,且,满足条件的点的轨迹为曲线(1)求曲线的方程;(2)是否存在过点的直线,直线与曲线相交于两点,直线与轴分别交于两点,使得?若存在,求出直线的方程;若不存在,请说明理由2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】解一元二次不等式化简集合A,再根据对数的真数大于零化简集合B,求交集运算即可.【题目详解】由可得,所以,由可得,所以,所以,故选A【答案点睛】本题主要考查了集合的交集运算,涉及一元二次不等式解法及对数的概念,属于中档题.2、C【答案解析】根据线

8、面平行与垂直的判定与性质逐个分析即可.【题目详解】因为,所以,因为E、F分别是AB、AD的中点,所以,所以,因为面面,所以.选项A、D显然成立;因为,平面,所以平面,因为平面,所以,所以B项成立;易知平面MEF,平面MPQ,而直线与不垂直,所以C项不成立.故选:C【答案点睛】本题考查直线与平面的位置关系.属于中档题.3、A【答案解析】由已知新运算的意义就是取得中的最小值,因此函数,只有选项中的图象符合要求,故选A.4、A【答案解析】分析:由题意可得为等腰三角形,为等边三角形,把数量积分拆,设,数量积转化为关于t的函数,用函数可求得最小值。详解:连接BD,取AD中点为O,可知为等腰三角形,而,所

9、以为等边三角形,。设=所以当时,上式取最小值 ,选A.点睛:本题考查的是平面向量基本定理与向量的拆分,需要选择合适的基底,再把其它向量都用基底表示。同时利用向量共线转化为函数求最值。5、C【答案解析】画出函数和的图像,和均关于点中心对称,计算得到答案.【题目详解】,验证知不成立,故,画出函数和的图像,易知:和均关于点中心对称,图像共有8个交点,故所有解之和等于.故选:.【答案点睛】本题考查了方程解的问题,意在考查学生的计算能力和应用能力,确定函数关于点中心对称是解题的关键.6、B【答案解析】设双曲线的渐近线方程为,与抛物线方程联立,利用,求出的值,得到的值,求出关系,进而判断大小,结合椭圆的焦

10、距为2,即可求出结论.【题目详解】设双曲线的渐近线方程为,代入抛物线方程得,依题意,椭圆的焦距,双曲线的标准方程为.故选:B.【答案点睛】本题考查椭圆和双曲线的标准方程、双曲线的简单几何性质,要注意双曲线焦点位置,属于中档题.7、D【答案解析】利用交集的定义直接计算即可.【题目详解】,故,故选:D.【答案点睛】本题考查集合的交运算,注意常见集合的符号表示,本题属于基础题.8、C【答案解析】试题分析:根据充分条件和必要条件的定义进行判断即可解:在等差数列an中,若a2a1,则d0,即数列an为单调递增数列,若数列an为单调递增数列,则a2a1,成立,即“a2a1”是“数列an为单调递增数列”充分

11、必要条件,故选C考点:必要条件、充分条件与充要条件的判断9、D【答案解析】设,去绝对值,根据余弦函数的性质即可求出【题目详解】因为实数,满足,设,恒成立,故则的最小值等于.故选:【答案点睛】本题考查了椭圆的参数方程、三角函数的图象和性质,考查了运算能力和转化能力,意在考查学生对这些知识的理解掌握水平10、B【答案解析】如图,已知,解得, ,解得.折断后的竹干高为4.55尺故选B.11、C【答案解析】根据三棱柱的展开图的可能情况选出选项.【题目详解】由图可知,ABD选项可以围成三棱柱,C选项不是三棱柱展开图.故选:C【答案点睛】本小题主要考查三棱柱展开图的判断,属于基础题.12、C【答案解析】设

12、抛物线的解析式,得焦点为,对称轴为轴,准线为,这样可设点坐标为,代入抛物线方程可求得,而到直线的距离为,从而可求得三角形面积【题目详解】设抛物线的解析式,则焦点为,对称轴为轴,准线为,直线经过抛物线的焦点,是与的交点,又轴,可设点坐标为,代入,解得,又点在准线上,设过点的的垂线与交于点,.故应选C.【答案点睛】本题考查抛物线的性质,解题时只要设出抛物线的标准方程,就能得出点坐标,从而求得参数的值本题难度一般二、填空题:本题共4小题,每小题5分,共20分。13、8 1 【答案解析】根据二项式系数和的性质可得n,再利用展开式的通项公式求含项的系数即可.【题目详解】由于所有项的二项式系数之和为,故的

13、二项展开式的通项公式为,令,求得,可得含x项的系数等于,故答案为:8;1【答案点睛】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于中档题14、【答案解析】由正弦定理,三角函数恒等变换的应用化简已知等式,结合范围可求的值,利用正弦定理可求的值,进而根据余弦定理,基本不等式可求的最大值,进而根据三角形的面积公式即可求解.【题目详解】解:,由正弦定理可得:,又,即,可得:,外接圆的半径为,解得,由余弦定理,可得,又,(当且仅当时取等号),即最大值为4,面积的最大值为.故答案为:.【答案点睛】本题主要考查了正弦定理,三角函数恒等变换的应用,余弦定理,基本不等式,三角形的面

14、积公式在解三角形中的应用,考查了转化思想,属于中档题15、2 40 【答案解析】(1)由时,即可得出的值;(2)解不等式组,即可得出答案.【题目详解】(1)由图可知,当时,即(2)由题意可得,解得则为了不使人身体受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过分钟人方可进入房间.故答案为:(1)2;(2)40【答案点睛】本题主要考查了分段函数的应用,属于中档题.16、或1【答案解析】利用导数的几何意义,可得切线的斜率,以及切线方程,求得切线与轴和的交点,由三角形的面积公式可得所求值【题目详解】的导数为,可得切线的斜率为3,切线方程为,可得,可得切线与轴的交点为,切线与的交点为,可得,解得或。【答案点睛】本题主要考查利用导数求切线方程,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 考试真题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2