1、2023学年高考数学模拟测试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设,分别为双曲线(a0,b0)的左、右焦点,过点作圆 的切线与双曲线的左支交于点P,若,则双曲线的离心率为( )ABCD2已知是等差数列的前项和,若,则( )A5B10C15D203已知,则的值等于( )ABCD4设,是空间两条不同的直线,
2、是空间两个不同的平面,给出下列四个命题:若,则;若,则;若,则;若,则.其中正确的是( )ABCD5已知,满足,且的最大值是最小值的4倍,则的值是( )A4BCD6已知双曲线满足以下条件:双曲线E的右焦点与抛物线的焦点F重合;双曲线E与过点的幂函数的图象交于点Q,且该幂函数在点Q处的切线过点F关于原点的对称点则双曲线的离心率是( )ABCD7在平面直角坐标系中,已知角的顶点与原点重合,始边与轴的非负半轴重合,终边落在直线上,则( )ABCD8如图所示,为了测量、两座岛屿间的距离,小船从初始位置出发,已知在的北偏西的方向上,在的北偏东的方向上,现在船往东开2百海里到达处,此时测得在的北偏西的方向
3、上,再开回处,由向西开百海里到达处,测得在的北偏东的方向上,则、两座岛屿间的距离为( )A3BC4D9已知函数,其中,记函数满足条件:为事件,则事件发生的概率为ABCD10执行下面的程序框图,如果输入,则计算机输出的数是( )ABCD11设双曲线(,)的一条渐近线与抛物线有且只有一个公共点,且椭圆的焦距为2,则双曲线的标准方程为( )ABCD12在中,则边上的高为( )AB2CD二、填空题:本题共4小题,每小题5分,共20分。13已知双曲线:(,),直线:与双曲线的两条渐近线分别交于,两点.若(点为坐标原点)的面积为32,且双曲线的焦距为,则双曲线的离心率为_.14将一个半径适当的小球放入如图
4、所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入袋或袋中.己知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是,则小球落入袋中的概率为_15已知双曲线的左、右焦点和点为某个等腰三角形的三个顶点,则双曲线C的离心率为_.16已知数列满足:点在直线上,若使、构成等比数列,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)选修4-5:不等式选讲已知函数.(1)设,求不等式的解集;(2)已知,且的最小值等于,求实数的值.18(12分)某贫困地区几个丘陵的外围有两条相互垂直的直线型公路,以及铁路线上的一条应开凿的直线穿山隧道,
5、为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路, 以所在的直线分别为轴,轴, 建立平面直角坐标系, 如图所示, 山区边界曲线为,设公路与曲线相切于点,的横坐标为.(1)当为何值时,公路的长度最短?求出最短长度;(2)当公路的长度最短时,设公路交轴,轴分别为,两点,并测得四边形中,千米,千米,求应开凿的隧道的长度.19(12分)已知(1)已知关于的不等式有实数解,求的取值范围;(2)求不等式的解集20(12分)在四棱锥的底面中,平面,是的中点,且()求证:平面;()求二面角的余弦值;()线段上是否存在点,使得,若存在指出点的位置,若不存在请说明理由.21(12分)如图
6、1,四边形为直角梯形,为线段上一点,满足,为的中点,现将梯形沿折叠(如图2),使平面平面.(1)求证:平面平面;(2)能否在线段上找到一点(端点除外)使得直线与平面所成角的正弦值为?若存在,试确定点的位置;若不存在,请说明理由.22(10分)在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.()求直线的直角坐标方程与曲线的普通方程;()已知点设直线与曲线相交于两点,求的值.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解
7、析】设过点作圆 的切线的切点为,根据切线的性质可得,且,再由和双曲线的定义可得,得出为中点,则有,得到,即可求解.【题目详解】设过点作圆 的切线的切点为,所以是中点,.故选:C.【答案点睛】本题考查双曲线的性质、双曲线定义、圆的切线性质,意在考查直观想象、逻辑推理和数学计算能力,属于中档题.2、C【答案解析】利用等差通项,设出和,然后,直接求解即可【题目详解】令,则,.【答案点睛】本题考查等差数列的求和问题,属于基础题3、A【答案解析】由余弦公式的二倍角可得,再由诱导公式有,所以【题目详解】由余弦公式的二倍角展开式有又故选:A【答案点睛】本题考查了学生对二倍角公式的应用,要求学生熟练掌握三角函
8、数中的诱导公式,属于简单题4、C【答案解析】根据线面平行或垂直的有关定理逐一判断即可.【题目详解】解:、也可能相交或异面,故错:因为,所以或,因为,所以,故对:或,故错:如图因为,在内过点作直线的垂线,则直线,又因为,设经过和相交的平面与交于直线,则又,所以因为, 所以,所以,故对.故选:C【答案点睛】考查线面平行或垂直的判断,基础题.5、D【答案解析】试题分析:先画出可行域如图:由,得,由,得,当直线过点时,目标函数取得最大值,最大值为3;当直线过点时,目标函数取得最小值,最小值为3a;由条件得,所以,故选D.考点:线性规划.6、B【答案解析】由已知可求出焦点坐标为,可求得幂函数为,设出切点
9、通过导数求出切线方程的斜率,利用斜率相等列出方程,即可求出切点坐标,然后求解双曲线的离心率【题目详解】依题意可得,抛物线的焦点为,F关于原点的对称点;,所以,设,则,解得, ,可得,又,可解得,故双曲线的离心率是.故选B【答案点睛】本题考查双曲线的性质,已知抛物线方程求焦点坐标,求幂函数解析式,直线的斜率公式及导数的几何意义,考查了学生分析问题和解决问题的能力,难度一般.7、C【答案解析】利用诱导公式以及二倍角公式,将化简为关于的形式,结合终边所在的直线可知的值,从而可求的值.【题目详解】因为,且,所以.故选:C.【答案点睛】本题考查三角函数中的诱导公式以及三角恒等变换中的二倍角公式,属于给角
10、求值类型的问题,难度一般.求解值的两种方法:(1)分别求解出的值,再求出结果;(2)将变形为,利用的值求出结果.8、B【答案解析】先根据角度分析出的大小,然后根据角度关系得到的长度,再根据正弦定理计算出的长度,最后利用余弦定理求解出的长度即可.【题目详解】由题意可知:,所以,所以,所以,又因为,所以,所以.故选:B.【答案点睛】本题考查解三角形中的角度问题,难度一般.理解方向角的概念以及活用正、余弦定理是解答问题的关键.9、D【答案解析】由得,分别以为横纵坐标建立如图所示平面直角坐标系,由图可知,.10、B【答案解析】先明确该程序框图的功能是计算两个数的最大公约数,再利用辗转相除法计算即可.【
11、题目详解】本程序框图的功能是计算,中的最大公约数,所以,故当输入,则计算机输出的数是57.故选:B.【答案点睛】本题考查程序框图的功能,做此类题一定要注意明确程序框图的功能是什么,本题是一道基础题.11、B【答案解析】设双曲线的渐近线方程为,与抛物线方程联立,利用,求出的值,得到的值,求出关系,进而判断大小,结合椭圆的焦距为2,即可求出结论.【题目详解】设双曲线的渐近线方程为,代入抛物线方程得,依题意,椭圆的焦距,双曲线的标准方程为.故选:B.【答案点睛】本题考查椭圆和双曲线的标准方程、双曲线的简单几何性质,要注意双曲线焦点位置,属于中档题.12、C【答案解析】结合正弦定理、三角形的内角和定理
12、、两角和的正弦公式,求得边长,由此求得边上的高.【题目详解】过作,交的延长线于.由于,所以为钝角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即边上的高为.故选:C【答案点睛】本小题主要考查正弦定理解三角形,考查三角形的内角和定理、两角和的正弦公式,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、或【答案解析】用表示出的面积,求得等量关系,联立焦距的大小,以及,即可容易求得,则离心率得解.【题目详解】联立解得.所以的面积,所以.而由双曲线的焦距为知,所以.联立解得或故双曲线的离心率为或.故答案为:或.【答案点睛】本题考查双曲线的方程与性质,考查运算求解能力以及函数与
13、方程思想,属中档题.14、【答案解析】记小球落入袋中的概率,则,又小球每次遇到黑色障碍物时一直向左或者一直向右下落,小球将落入袋,所以有,则故本题应填15、【答案解析】由等腰三角形及双曲线的对称性可知或,进而利用两点间距离公式求解即可.【题目详解】由题设双曲线的左、右焦点分别为,因为左、右焦点和点为某个等腰三角形的三个顶点,当时,由可得,等式两边同除可得,解得(舍);当时,由可得,等式两边同除可得,解得,故答案为:【答案点睛】本题考查求双曲线的离心率,考查双曲线的几何性质的应用,考查分类讨论思想.16、13【答案解析】根据点在直线上可求得,由等比中项的定义可构造方程求得结果.【题目详解】在上,
14、成等比数列,即,解得:.故答案为:.【答案点睛】本题考查根据三项成等比数列求解参数值的问题,涉及到等比中项的应用,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1) (2) 【答案解析】(1)把f(x)去绝对值写成分段函数的形式,分类讨论,分别求得解集,综合可得结论(2)把f(x)去绝对值写成分段函数,画出f(x)的图像,找出利用条件求得a的值【题目详解】(1)时,.当时,即为,解得.当时, ,解得.当时, ,解得.综上,的解集为.(2).,由的图象知,.【答案点睛】本题主要考查含绝对值不等式的解法及含绝对值的函数的最值问题,体现了分类讨论的数学思想,属于中档题18、(1)当时,公路的长度最短为千米;(2)(千米).【答案解