收藏 分享(赏)

2023学年虎门外国语学校高三二诊模拟考试数学试卷(含解析).doc

上传人:la****1 文档编号:13131 上传时间:2023-01-06 格式:DOC 页数:20 大小:1.84MB
下载 相关 举报
2023学年虎门外国语学校高三二诊模拟考试数学试卷(含解析).doc_第1页
第1页 / 共20页
2023学年虎门外国语学校高三二诊模拟考试数学试卷(含解析).doc_第2页
第2页 / 共20页
2023学年虎门外国语学校高三二诊模拟考试数学试卷(含解析).doc_第3页
第3页 / 共20页
2023学年虎门外国语学校高三二诊模拟考试数学试卷(含解析).doc_第4页
第4页 / 共20页
2023学年虎门外国语学校高三二诊模拟考试数学试卷(含解析).doc_第5页
第5页 / 共20页
2023学年虎门外国语学校高三二诊模拟考试数学试卷(含解析).doc_第6页
第6页 / 共20页
亲,该文档总共20页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1函数的图象可能是下列哪一个?( )ABCD2已知函数,则下列结论错误的是( )A函数的最小正周期为B函数的图象关于点对

2、称C函数在上单调递增D函数的图象可由的图象向左平移个单位长度得到3已知函数,关于x的方程f(x)a存在四个不同实数根,则实数a的取值范围是( )A(0,1)(1,e)BCD(0,1)4正方体,是棱的中点,在任意两个中点的连线中,与平面平行的直线有几条( )A36B21C12D65如图所示的茎叶图为高三某班名学生的化学考试成绩,算法框图中输入的,为茎叶图中的学生成绩,则输出的,分别是() A,B,C,D,6过双曲线的右焦点F作双曲线C的一条弦AB,且,若以AB为直径的圆经过双曲线C的左顶点,则双曲线C的离心率为( )ABC2D7展开式中x2的系数为( )A1280B4864C4864D12808

3、已知定义在上的奇函数,其导函数为,当时,恒有则不等式的解集为( )ABC或D或9如果实数满足条件,那么的最大值为( )ABCD10已知正项等比数列中,存在两项,使得,则的最小值是( )ABCD11已知双曲线(,),以点()为圆心,为半径作圆,圆与双曲线的一条渐近线交于,两点,若,则的离心率为()ABCD12某校为提高新入聘教师的教学水平,实行“老带新”的师徒结对指导形式,要求每位老教师都有徒弟,每位新教师都有一位老教师指导,现选出3位老教师负责指导5位新入聘教师,则不同的师徒结对方式共有( )种.A360B240C150D120二、填空题:本题共4小题,每小题5分,共20分。13在平面直角坐标

4、系xOy中,若圆C1:x2(y1)2r2(r0)上存在点P,且点P关于直线xy0的对称点Q在圆C2:(x2)2(y1)21上,则r的取值范围是_14九章算术中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑中,平面,且,过点分别作于点,于点,连接,则三棱锥的体积的最大值为_15已知是抛物线上一点,是圆关于直线对称的曲线上任意一点,则的最小值为_16某中学高一年级有学生1200人,高二年级有学生900人,高三年级有学生1500人,现按年级用分层抽样的方法从这三个年级的学生中抽取一个容量为720的样本进行某项研究,则应从高三年级学生中抽取_人三、解答题:共70分。解答应写出文字说明、证明过程

5、或演算步骤。17(12分)已知函数()在定义域内有两个不同的极值点.(1)求实数的取值范围;(2)若有两个不同的极值点,且,若不等式恒成立.求正实数的取值范围.18(12分)已知在等比数列中,.(1)求数列的通项公式;(2)若,求数列前项的和.19(12分)已知函数()当时,讨论函数的单调区间;()若对任意的和恒成立,求实数的取值范围20(12分)如图,在四棱柱中,底面是正方形,平面平面,.过顶点,的平面与棱,分别交于,两点.()求证:;()求证:四边形是平行四边形;()若,试判断二面角的大小能否为?说明理由.21(12分)如图,两座建筑物AB,CD的底部都在同一个水平面上,且均与水平面垂直,

6、它们的高度分别是10m和20m,从建筑物AB的顶部A看建筑物CD的视角CAD60(1)求BC的长度;(2)在线段BC上取一点P(点P与点B,C不重合),从点P看这两座建筑物的视角分别为APB,DPC,问点P在何处时,+最小?22(10分)在中,内角的对边分别是,已知.(1)求角的值;(2)若,求的面积2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】由排除选项;排除选项;由函数有无数个零点,排除选项,从而可得结果.【题目详解】由,可排除选项,可排除选项;由可得,即函数有无数个零点,

7、可排除选项,故选A.【答案点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.2、D【答案解析】由可判断选项A;当时,可判断选项B;利用整体换元法可判断选项C;可判断选项D.【题目详解】由题知,最小正周期,所以A正确;当时,所以B正确;当时,所以C正确;由的图象向左平移个单位,得,所以D错误.故选:D.【答案点睛】本题考查余弦型函数的性质,涉及到周

8、期性、对称性、单调性以及图象变换后的解析式等知识,是一道中档题.3、D【答案解析】原问题转化为有四个不同的实根,换元处理令t,对g(t)进行零点个数讨论.【题目详解】由题意,a2,令t,则f(x)a记g(t)当t2时,g(t)2ln(t)(t)单调递减,且g(2)2,又g(2)2,只需g(t)2在(2,+)上有两个不等于2的不等根则,记h(t)(t2且t2),则h(t)令(t),则(t)2(2)2,(t)在(2,2)大于2,在(2,+)上小于2h(t)在(2,2)上大于2,在(2,+)上小于2,则h(t)在(2,2)上单调递增,在(2,+)上单调递减由,可得,即a2实数a的取值范围是(2,2)

9、故选:D【答案点睛】此题考查方程的根与函数零点问题,关键在于等价转化,将问题转化为通过导函数讨论函数单调性解决问题.4、B【答案解析】先找到与平面平行的平面,利用面面平行的定义即可得到.【题目详解】考虑与平面平行的平面,平面,平面,共有,故选:B.【答案点睛】本题考查线面平行的判定定理以及面面平行的定义,涉及到了简单的组合问题,是一中档题.5、B【答案解析】试题分析:由程序框图可知,框图统计的是成绩不小于80和成绩不小于60且小于80的人数,由茎叶图可知,成绩不小于80的有12个,成绩不小于60且小于80的有26个,故,考点:程序框图、茎叶图6、C【答案解析】由得F是弦AB的中点.进而得AB垂

10、直于x轴,得,再结合关系求解即可【题目详解】因为,所以F是弦AB的中点.且AB垂直于x轴.因为以AB为直径的圆经过双曲线C的左顶点,所以,即,则,故.故选:C【答案点睛】本题是对双曲线的渐近线以及离心率的综合考查,是考查基本知识,属于基础题7、A【答案解析】根据二项式展开式的公式得到具体为:化简求值即可.【题目详解】根据二项式的展开式得到可以第一个括号里出项,第二个括号里出项,或者第一个括号里出,第二个括号里出,具体为: 化简得到-1280 x2故得到答案为:A.【答案点睛】求二项展开式有关问题的常见类型及解题策略:(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2

11、)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.8、D【答案解析】先通过得到原函数为增函数且为偶函数,再利用到轴距离求解不等式即可.【题目详解】构造函数,则由题可知,所以在时为增函数;由为奇函数,为奇函数,所以为偶函数;又,即即又为开口向上的偶函数所以,解得或故选:D【答案点睛】此题考查根据导函数构造原函数,偶函数解不等式等知识点,属于较难题目.9、B【答案解析】解:当直线过点时,最大,故选B10、C【答案解析】由已知求出等比数列的公比,进而求出,尝试用基本不等式,但取不到等号,所以考虑直接取的值代入比较即可.【题目详解】,或(舍).,

12、.当,时;当,时;当,时,所以最小值为.故选:C.【答案点睛】本题考查等比数列通项公式基本量的计算及最小值,属于基础题.11、A【答案解析】求出双曲线的一条渐近线方程,利用圆与双曲线的一条渐近线交于两点,且,则可根据圆心到渐近线距离为列出方程,求解离心率【题目详解】不妨设双曲线的一条渐近线与圆交于,因为,所以圆心到的距离为:,即,因为,所以解得故选A【答案点睛】本题考查双曲线的简单性质的应用,考查了转化思想以及计算能力,属于中档题对于离心率求解问题,关键是建立关于的齐次方程,主要有两个思考方向,一方面,可以从几何的角度,结合曲线的几何性质以及题目中的几何关系建立方程;另一方面,可以从代数的角度

13、,结合曲线方程的性质以及题目中的代数的关系建立方程.12、C【答案解析】可分成两类,一类是3个新教师与一个老教师结对,其他一新一老结对,第二类两个老教师各带两个新教师,一个老教师带一个新教师,分别计算后相加即可【题目详解】分成两类,一类是3个新教师与同一个老教师结对,有种结对结对方式,第二类两个老教师各带两个新教师,有共有结对方式6090150种故选:C【答案点睛】本题考查排列组合的综合应用解题关键确定怎样完成新老教师结对这个事情,是先分类还是先分步,确定方法后再计数本题中有一个平均分组问题计数时容易出错两组中每组中人数都是2,因此方法数为二、填空题:本题共4小题,每小题5分,共20分。13、

14、【答案解析】设圆C1上存在点P(x0,y0),则Q(y0,x0),分别满足两个圆的方程,列出方程组,转化成两个新圆有公共点求参数范围.【题目详解】设圆C1上存在点P(x0,y0)满足题意,点P关于直线xy0的对称点Q(y0,x0),则,故只需圆x2(y1)2r2与圆(x1)2(y2)21有交点即可,所以|r1|r1,解得.故答案为:【答案点睛】此题考查圆与圆的位置关系,其中涉及点关于直线对称点问题,两个圆有公共点的判定方式.14、【答案解析】由已知可得AEF、PEF均为直角三角形,且AF2,由基本不等式可得当AEEF2时,AEF的面积最大,然后由棱锥体积公式可求得体积最大值【题目详解】由PA平面ABC,得PABC,又ABBC,且PAABA,BC平面PAB,则BCAE,又PBAE,则AE平面PBC,于是AEEF,且AEPC,结合条

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 考试真题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2