收藏 分享(赏)

2023学年贵州省湄潭县湄江高级中学高三下学期第六次检测数学试卷(含解析).doc

上传人:la****1 文档编号:13132 上传时间:2023-01-06 格式:DOC 页数:20 大小:1.98MB
下载 相关 举报
2023学年贵州省湄潭县湄江高级中学高三下学期第六次检测数学试卷(含解析).doc_第1页
第1页 / 共20页
2023学年贵州省湄潭县湄江高级中学高三下学期第六次检测数学试卷(含解析).doc_第2页
第2页 / 共20页
2023学年贵州省湄潭县湄江高级中学高三下学期第六次检测数学试卷(含解析).doc_第3页
第3页 / 共20页
2023学年贵州省湄潭县湄江高级中学高三下学期第六次检测数学试卷(含解析).doc_第4页
第4页 / 共20页
2023学年贵州省湄潭县湄江高级中学高三下学期第六次检测数学试卷(含解析).doc_第5页
第5页 / 共20页
2023学年贵州省湄潭县湄江高级中学高三下学期第六次检测数学试卷(含解析).doc_第6页
第6页 / 共20页
亲,该文档总共20页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求

2、的。1已知集合A=x|x1,B=x|,则ABCD2已知等差数列中,则( )A20B18C16D143已知正四棱锥的侧棱长与底面边长都相等,是的中点,则所成的角的余弦值为( )ABCD4集合,则( )ABCD5已知棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的四个面中,最大面积为( )ABCD6在正项等比数列an中,a5-a1=15,a4-a2 =6,则a3=( )A2B4CD87若样本的平均数是10,方差为2,则对于样本,下列结论正确的是( )A平均数为20,方差为4B平均数为11,方差为4C平均数为21,方差为8D平均数为20,方差为88已知为坐标原点,角的终边经过点且,则(

3、 )ABCD9已知函数,若,对任意恒有,在区间上有且只有一个使,则的最大值为( )ABCD10平行四边形中,已知,点、分别满足,且,则向量在上的投影为( )A2BCD11已知随机变量的分布列是则( )ABCD12设复数满足,则在复平面内的对应点位于( )A第一象限B第二象限C第三象限D第四象限二、填空题:本题共4小题,每小题5分,共20分。13记为数列的前项和.若,则_.14从一箱产品中随机地抽取一件,设事件抽到一等品,事件抽到二等品,事件抽到三等品,且已知, ,则事件“抽到的产品不是一等品”的概率为_15将函数的图象向左平移个单位长度,得到一个偶函数图象,则_16已知函数在处的切线与直线平行

4、,则为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在直角坐标系中,长为3的线段的两端点分别在轴、轴上滑动,点为线段上的点,且满足.记点的轨迹为曲线.(1)求曲线的方程;(2)若点为曲线上的两个动点,记,判断是否存在常数使得点到直线的距离为定值?若存在,求出常数的值和这个定值;若不存在,请说明理由.18(12分)某学校为了解全校学生的体重情况,从全校学生中随机抽取了100 人的体重数据,得到如下频率分布直方图,以样本的频率作为总体的概率.(1)估计这100人体重数据的平均值和样本方差;(结果取整数,同一组中的数据用该组区间的中点值作代表)(2)从全校学生中随机

5、抽取3名学生,记为体重在的人数,求的分布列和数学期望;(3)由频率分布直方图可以认为,该校学生的体重近似服从正态分布.若,则认为该校学生的体重是正常的.试判断该校学生的体重是否正常?并说明理由.19(12分)已知函数是减函数.(1)试确定a的值;(2)已知数列,求证:.20(12分)设椭圆:的左、右焦点分别为,下顶点为,椭圆的离心率是,的面积是.(1)求椭圆的标准方程.(2)直线与椭圆交于,两点(异于点),若直线与直线的斜率之和为1,证明:直线恒过定点,并求出该定点的坐标.21(12分)已知椭圆,上、下顶点分别是、,上、下焦点分别是、,焦距为,点在椭圆上.(1)求椭圆的方程;(2)若为椭圆上异

6、于、的动点,过作与轴平行的直线,直线与交于点,直线与直线交于点,判断是否为定值,说明理由.22(10分)如图,四棱锥中,底面是边长为的菱形,点分别是的中点(1)求证:平面;(2)若,求直线与平面所成角的正弦值2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】集合集合,故选A2、A【答案解析】设等差数列的公差为,再利用基本量法与题中给的条件列式求解首项与公差,进而求得即可.【题目详解】设等差数列的公差为.由得,解得.所以.故选:A【答案点睛】本题主要考查了等差数列的基本量求解,属于基

7、础题.3、C【答案解析】试题分析:设的交点为,连接,则为所成的角或其补角;设正四棱锥的棱长为,则,所以,故C为正确答案考点:异面直线所成的角4、D【答案解析】利用交集的定义直接计算即可.【题目详解】,故,故选:D.【答案点睛】本题考查集合的交运算,注意常见集合的符号表示,本题属于基础题.5、B【答案解析】由三视图可知,该三棱锥如图, 其中底面是等腰直角三角形,平面,结合三视图求出每个面的面积即可.【题目详解】由三视图可知,该三棱锥如图所示:其中底面是等腰直角三角形,平面,由三视图知,因为,所以,所以,因为为等边三角形,所以,所以该三棱锥的四个面中,最大面积为.故选:B【答案点睛】本题考查三视图

8、还原几何体并求其面积; 考查空间想象能力和运算求解能力;三视图正确还原几何体是求解本题的关键;属于中档题、常考题型.6、B【答案解析】根据题意得到,解得答案.【题目详解】,解得或(舍去).故.故选:.【答案点睛】本题考查了等比数列的计算,意在考查学生的计算能力.7、D【答案解析】由两组数据间的关系,可判断二者平均数的关系,方差的关系,进而可得到答案.【题目详解】样本的平均数是10,方差为2,所以样本的平均数为,方差为.故选:D.【答案点睛】样本的平均数是,方差为,则的平均数为,方差为.8、C【答案解析】根据三角函数的定义,即可求出,得出,得出和,再利用二倍角的正弦公式,即可求出结果.【题目详解

9、】根据题意,解得,所以,所以,所以.故选:C.【答案点睛】本题考查三角函数定义的应用和二倍角的正弦公式,考查计算能力.9、C【答案解析】根据的零点和最值点列方程组,求得的表达式(用表示),根据在上有且只有一个最大值,求得的取值范围,求得对应的取值范围,由为整数对的取值进行验证,由此求得的最大值.【题目详解】由题意知,则其中,又在上有且只有一个最大值,所以,得,即,所以,又,因此当时,此时取可使成立,当时,所以当或时,都成立,舍去;当时,此时取可使成立,当时,所以当或时,都成立,舍去;当时,此时取可使成立,当时,所以当时,成立;综上所得的最大值为故选:C【答案点睛】本小题主要考查三角函数的零点和

10、最值,考查三角函数的性质,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题.10、C【答案解析】将用向量和表示,代入可求出,再利用投影公式可得答案.【题目详解】解:,得,则向量在上的投影为.故选:C.【答案点睛】本题考查向量的几何意义,考查向量的线性运算,将用向量和表示是关键,是基础题.11、C【答案解析】利用分布列求出,求出期望,再利用期望的性质可求得结果.【题目详解】由分布列的性质可得,得,所以,因此,.故选:C.【答案点睛】本题考查离散型随机变量的分布列以及期望的求法,是基本知识的考查12、C【答案解析】化简得到,得到答案.【题目详解】,故,对应点在第三象限.故选:.

11、【答案点睛】本题考查了复数的化简和对应象限,意在考查学生的计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、1【答案解析】由已知数列递推式可得数列是以16为首项,以为公比的等比数列,再由等比数列的前项和公式求解【题目详解】由,得,且,则,即数列是以16为首项,以为公比的等比数列,则故答案为:1【答案点睛】本题主要考查数列递推式,考查等比数列的前项和,意在考查学生对这些知识的理解掌握水平14、0.35【答案解析】根据对立事件的概率和为1,结合题意,即可求出结果来【题目详解】解:由题意知本题是一个对立事件的概率,抽到的不是一等品的对立事件是抽到一等品,抽到不是一等品的概率是,故答案为

12、:【答案点睛】本题考查了求互斥事件与对立事件的概率的应用问题,属于基础题15、【答案解析】根据平移后关于轴对称可知关于对称,进而利用特殊值构造方程,从而求得结果.【题目详解】向左平移个单位长度后得到偶函数图象,即关于轴对称关于对称 即: 本题正确结果:【答案点睛】本题考查根据三角函数的对称轴求解参数值的问题,关键是能够通过平移后的对称轴得到原函数的对称轴,进而利用特殊值的方式来进行求解.16、【答案解析】根据题意得出,由此可得出实数的值.【题目详解】,直线的斜率为,由于函数在处的切线与直线平行,则.故答案为:.【答案点睛】本题考查利用函数的切线与直线平行求参数,解题时要结合两直线的位置关系得出

13、两直线斜率之间的关系,考查计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)存在;常数,定值【答案解析】(1)设出的坐标,利用以及,求得曲线的方程.(2)当直线的斜率存在时,设出直线的方程,求得到直线的距离.联立直线的方程和曲线的方程,写出根与系数关系,结合以及为定值,求得的值.当直线的斜率不存在时,验证.由此得到存在常数,且定值.【题目详解】(1)解析:(1)设,由题可得,解得又,即,消去得:(2)当直线的斜率存在时,设直线的方程为设,由可得:由点到的距离为定值可得(为常数)即得:即,又为定值时,此时,且符合当直线的斜率不存在时,设直线方程

14、为由题可得,时,经检验,符合条件综上可知,存在常数,且定值【答案点睛】本小题主要考查轨迹方程的求法,考查直线和椭圆的位置关系,考查运算求解能力,考查椭圆中的定值问题,属于难题.18、(1)60;25(2)见解析,2.1(3)可以认为该校学生的体重是正常的.见解析【答案解析】(1)根据频率分布直方图可求出平均值和样本方差;(2)由题意知服从二项分布,分别求出,进而可求出分布列以及数学期望;(3)由第一问可知服从正态分布,继而可求出的值,从而可判断.【题目详解】解:(1)(2)由已知可得从全校学生中随机抽取1人,体重在的概率为0.7. 随机拍取3人,相当于3次独立重复实验,随机交量服从二项分布,则,所以的分布列为:

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 考试真题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2