收藏 分享(赏)

2023学年陕西汉中市汉台区县高三第一次模拟考试数学试卷(含解析).doc

上传人:g****t 文档编号:13207 上传时间:2023-01-06 格式:DOC 页数:19 大小:1.85MB
下载 相关 举报
2023学年陕西汉中市汉台区县高三第一次模拟考试数学试卷(含解析).doc_第1页
第1页 / 共19页
2023学年陕西汉中市汉台区县高三第一次模拟考试数学试卷(含解析).doc_第2页
第2页 / 共19页
2023学年陕西汉中市汉台区县高三第一次模拟考试数学试卷(含解析).doc_第3页
第3页 / 共19页
2023学年陕西汉中市汉台区县高三第一次模拟考试数学试卷(含解析).doc_第4页
第4页 / 共19页
2023学年陕西汉中市汉台区县高三第一次模拟考试数学试卷(含解析).doc_第5页
第5页 / 共19页
2023学年陕西汉中市汉台区县高三第一次模拟考试数学试卷(含解析).doc_第6页
第6页 / 共19页
亲,该文档总共19页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若复数满足,则(其中为虚数单位)的最大值为( )A1B2C3D42已知函数(表示不超过x的最大整数

2、),若有且仅有3个零点,则实数a的取值范围是()ABCD3如图是二次函数的部分图象,则函数的零点所在的区间是( )ABCD4若集合,则下列结论正确的是( )ABCD5已知定义在上的奇函数满足,且当时,则( )A1B-1C2D-26羽毛球混合双打比赛每队由一男一女两名运动员组成. 某班级从名男生,和名女生,中各随机选出两名,把选出的人随机分成两队进行羽毛球混合双打比赛,则和两人组成一队参加比赛的概率为( )ABCD7一个组合体的三视图如图所示(图中网格小正方形的边长为1),则该几何体的体积是( )ABCD8设直线的方程为,圆的方程为,若直线被圆所截得的弦长为,则实数的取值为A或11B或11CD9

3、已知命题:R,;命题 :R,则下列命题中为真命题的是( )ABCD10已知双曲线的焦距是虚轴长的2倍,则双曲线的渐近线方程为( )ABCD11已知平面和直线a,b,则下列命题正确的是( )A若,b,则B若,则C若,则D若,b,则12已知复数,为的共轭复数,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13圆心在曲线上的圆中,存在与直线相切且面积为的圆,则当取最大值时,该圆的标准方程为_.14在中,角,的对边分别为,.若;且,则周长的范围为_.15抛物线的焦点到准线的距离为 16用数字、组成无重复数字的位自然数,其中相邻两个数字奇偶性不同的有_个.三、解答题:共70分。解答应写

4、出文字说明、证明过程或演算步骤。17(12分)如图,在四棱锥中,底面为正方形,、分别为、的中点(1)求证:平面;(2)求直线与平面所成角的正弦值18(12分)已知椭圆的右焦点为,过作轴的垂线交椭圆于点(点在轴上方),斜率为的直线交椭圆于两点,过点作直线交椭圆于点,且,直线交轴于点.(1)设椭圆的离心率为,当点为椭圆的右顶点时,的坐标为,求的值.(2)若椭圆的方程为,且,是否存在使得成立?如果存在,求出的值;如果不存在,请说明理由.19(12分)在平面直角坐标系中,直线的参数方程为(为参数),曲线的极坐标方程为()求直线的普通方程及曲线的直角坐标方程;()设点,直线与曲线相交于,求的值20(12

5、分)如图,在平面直角坐标系中,以轴正半轴为始边的锐角的终边与单位圆交于点,且点的纵坐标是(1)求的值:(2)若以轴正半轴为始边的钝角的终边与单位圆交于点,且点的横坐标为,求的值21(12分)已知函数(1)若函数有且只有一个零点,求实数的取值范围;(2)若函数对恒成立,求实数的取值范围.22(10分)已知,函数的最小值为1(1)证明:(2)若恒成立,求实数的最大值2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】根据复数的几何意义可知复数对应的点在以原点为圆心,1为半径的圆上,再根据

6、复数的几何意义即可确定,即可得的最大值.【题目详解】由知,复数对应的点在以原点为圆心,1为半径的圆上,表示复数对应的点与点间的距离,又复数对应的点所在圆的圆心到的距离为1,所以.故选:B【答案点睛】本题考查了复数模的定义及其几何意义应用,属于基础题.2、A【答案解析】根据x的定义先作出函数f(x)的图象,利用函数与方程的关系转化为f(x)与g(x)=ax有三个不同的交点,利用数形结合进行求解即可【题目详解】当时,当时,当时,当时,若有且仅有3个零点,则等价为有且仅有3个根,即与有三个不同的交点,作出函数和的图象如图,当a=1时,与有无数多个交点,当直线经过点时,即,时,与有两个交点,当直线经过

7、点时,即时,与有三个交点,要使与有三个不同的交点,则直线处在过和之间,即,故选:A【答案点睛】利用函数零点的情况求参数值或取值范围的方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的范围; (2)分离参数法:先将参数分离,转化成求函数的值域(最值)问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.3、B【答案解析】根据二次函数图象的对称轴得出范围,轴截距,求出的范围,判断在区间端点函数值正负,即可求出结论.【题目详解】,结合函数的图象可知,二次函数的对称轴为,所以在上单调递增.又因为,所以函数的零点所在的区间

8、是.故选:B.【答案点睛】本题考查二次函数的图象及函数的零点,属于基础题.4、D【答案解析】由题意,分析即得解【题目详解】由题意,故,故选:D【答案点睛】本题考查了元素和集合,集合和集合之间的关系,考查了学生概念理解,数学运算能力,属于基础题.5、B【答案解析】根据f(x)是R上的奇函数,并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期为4,而由x0,1时,f(x)=2x-m及f(x)是奇函数,即可得出f(0)=1-m=0,从而求得m=1,这样便可得出f(2019)=f(-1)=-f(1)=-1【题目详解】是定义在R上的奇函数,且;的周期为4;时,;由奇函数性质

9、可得;时,;.故选:B.【答案点睛】本题考查利用函数的奇偶性和周期性求值,此类问题一般根据条件先推导出周期,利用函数的周期变换来求解,考查理解能力和计算能力,属于中等题.6、B【答案解析】根据组合知识,计算出选出的人分成两队混合双打的总数为,然后计算和分在一组的数目为,最后简单计算,可得结果.【题目详解】由题可知:分别从3名男生、3名女生中选2人 :将选中2名女生平均分为两组:将选中2名男生平均分为两组:则选出的人分成两队混合双打的总数为:和分在一组的数目为所以所求的概率为故选:B【答案点睛】本题考查排列组合的综合应用,对平均分组的问题要掌握公式,比如:平均分成组,则要除以,即,审清题意,细心

10、计算,考验分析能力,属中档题.7、C【答案解析】根据组合几何体的三视图还原出几何体,几何体是圆柱中挖去一个三棱柱,从而解得几何体的体积.【题目详解】由几何体的三视图可得,几何体的结构是在一个底面半径为1的圆、高为2的圆柱中挖去一个底面腰长为的等腰直角三角形、高为2的棱柱,故此几何体的体积为圆柱的体积减去三棱柱的体积,即,故选C.【答案点睛】本题考查了几何体的三视图问题、组合几何体的体积问题,解题的关键是要能由三视图还原出组合几何体,然后根据几何体的结构求出其体积.8、A【答案解析】圆的圆心坐标为(1,1),该圆心到直线的距离,结合弦长公式得,解得或,故选A9、B【答案解析】根据,可知命题的真假

11、,然后对取值,可得命题 的真假,最后根据真值表,可得结果.【题目详解】对命题:可知,所以R,故命题为假命题命题 :取,可知所以R,故命题为真命题所以为真命题故选:B【答案点睛】本题主要考查对命题真假的判断以及真值表的应用,识记真值表,属基础题.10、A【答案解析】根据双曲线的焦距是虚轴长的2倍,可得出,结合,得出,即可求出双曲线的渐近线方程.【题目详解】解:由双曲线可知,焦点在轴上,则双曲线的渐近线方程为:,由于焦距是虚轴长的2倍,可得:,即:,所以双曲线的渐近线方程为:.故选:A.【答案点睛】本题考查双曲线的简单几何性质,以及双曲线的渐近线方程.11、C【答案解析】根据线面的位置关系,结合线

12、面平行的判定定理、平行线的性质进行判断即可.【题目详解】A:当时,也可以满足,b,故本命题不正确;B:当时,也可以满足,故本命题不正确;C:根据平行线的性质可知:当,时,能得到,故本命题是正确的;D:当时,也可以满足,b,故本命题不正确.故选:C【答案点睛】本题考查了线面的位置关系,考查了平行线的性质,考查了推理论证能力.12、C【答案解析】求出,直接由复数的代数形式的乘除运算化简复数.【题目详解】.故选:C【答案点睛】本题考查复数的代数形式的四则运算,共轭复数,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】由题意可得圆的面积求出圆的半径,由圆心在曲线上,设圆的

13、圆心坐标,到直线的距离等于半径,再由均值不等式可得的最大值时圆心的坐标,进而求出圆的标准方程【题目详解】设圆的半径为,由题意可得,所以,由题意设圆心,由题意可得,由直线与圆相切可得,所以,而,所以,即,解得,所以的最大值为2,当且仅当时取等号,可得,所以圆心坐标为:,半径为,所以圆的标准方程为:.故答案为:【答案点睛】本题考查直线与圆的位置关系及均值不等式的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意验正等号成立的条件.14、【答案解析】先求角,再用余弦定理找到边的关系,再用基本不等式求的范围即可.【题目详解】解:所以三角形周长故答案为:【答案点睛】考查

14、正余弦定理、基本不等式的应用以及三条线段构成三角形的条件;基础题.15、【答案解析】试题分析:由题意得,因为抛物线,即,即焦点到准线的距离为.考点:抛物线的性质16、【答案解析】对首位数的奇偶进行分类讨论,利用分步乘法计数原理和分类加法计数原理可得出结果.【题目详解】若首位为奇数,则第一、三、五个数位上的数都是奇数,其余三个数位上的数为偶数,此时,符号条件的位自然数个数为个;若首位数为偶数,则首位数不能为,可排在第三或第五个数位上,第二、四、六个数位上的数为奇数,此时,符合条件的位自然数个数为个.综上所述,符合条件的位自然数个数为个.故答案为:.【答案点睛】本题考查数的排列问题,要注意首位数字的分类讨论,考查分步乘法计数和分类加法计数原理的应用,考查计算能力,属于中等题.三、解答题:共7

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 考试真题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2