收藏 分享(赏)

2023学年辽宁省葫芦岛协作体高三第五次模拟考试数学试卷(含解析).doc

上传人:g****t 文档编号:13227 上传时间:2023-01-06 格式:DOC 页数:21 大小:2.26MB
下载 相关 举报
2023学年辽宁省葫芦岛协作体高三第五次模拟考试数学试卷(含解析).doc_第1页
第1页 / 共21页
2023学年辽宁省葫芦岛协作体高三第五次模拟考试数学试卷(含解析).doc_第2页
第2页 / 共21页
2023学年辽宁省葫芦岛协作体高三第五次模拟考试数学试卷(含解析).doc_第3页
第3页 / 共21页
2023学年辽宁省葫芦岛协作体高三第五次模拟考试数学试卷(含解析).doc_第4页
第4页 / 共21页
2023学年辽宁省葫芦岛协作体高三第五次模拟考试数学试卷(含解析).doc_第5页
第5页 / 共21页
2023学年辽宁省葫芦岛协作体高三第五次模拟考试数学试卷(含解析).doc_第6页
第6页 / 共21页
亲,该文档总共21页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若命题:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题:在边长为4的正方形内任取一点,则的概

2、率为,则下列命题是真命题的是( )A B C D2中国铁路总公司相关负责人表示,到2018年底,全国铁路营业里程达到13.1万公里,其中高铁营业里程2.9万公里,超过世界高铁总里程的三分之二,下图是2014年到2018年铁路和高铁运营里程(单位:万公里)的折线图,以下结论不正确的是( )A每相邻两年相比较,2014年到2015年铁路运营里程增加最显著B从2014年到2018年这5年,高铁运营里程与年价正相关C2018年高铁运营里程比2014年高铁运营里程增长80%以上D从2014年到2018年这5年,高铁运营里程数依次成等差数列3是正四面体的面内一动点,为棱中点,记与平面成角为定值,若点的轨迹

3、为一段抛物线,则( )ABCD4已知直线y=k(x+1)(k0)与抛物线C相交于A,B两点,F为C的焦点,若|FA|=2|FB|,则|FA| =( )A1B2C3D45某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有A72种B36种C24种D18种6如图,平面与平面相交于,点,点,则下列叙述错误的是( )A直线与异面B过只有唯一平面与平行C过点只能作唯一平面与垂直D过一定能作一平面与垂直7已知,则,的大小关系为( )ABCD8第七届世界军人运动会于2019年10月18日至27

4、日在中国武汉举行,中国队以133金64银42铜位居金牌榜和奖牌榜的首位.运动会期间有甲、乙等五名志愿者被分配到射击、田径、篮球、游泳四个运动场地提供服务,要求每个人都要被派出去提供服务,且每个场地都要有志愿者服务,则甲和乙恰好在同一组的概率是( )ABCD9在中,则边上的高为( )AB2CD10双曲线的一条渐近线方程为,那么它的离心率为( )ABCD11已知甲盒子中有个红球,个蓝球,乙盒子中有个红球,个蓝球,同时从甲乙两个盒子中取出个球进行交换,(a)交换后,从甲盒子中取1个球是红球的概率记为.(b)交换后,乙盒子中含有红球的个数记为.则( )ABCD12已知函数,下列结论不正确的是( )A的

5、图像关于点中心对称B既是奇函数,又是周期函数C的图像关于直线对称D的最大值是二、填空题:本题共4小题,每小题5分,共20分。13函数的最小正周期为_;若函数在区间上单调递增,则的最大值为_.14已知圆柱的上下底面的中心分别为,过直线的平面截该圆柱所得的截面是面积为36的正方形,则该圆柱的体积为_15在数列中,则数列的通项公式_.16若曲线(其中常数)在点处的切线的斜率为1,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)求不等式的解集;(2)若正数、满足,求证:.18(12分)在极坐标系中,曲线的极坐标方程为,直线的极坐标方程为,设与交于、两点

6、,中点为,的垂直平分线交于、.以为坐标原点,极轴为轴的正半轴建立直角坐标系.(1)求的直角坐标方程与点的直角坐标;(2)求证:.19(12分)在极坐标系中,曲线的方程为,以极点为原点,极轴所在直线为轴建立直角坐标,直线的参数方程为(为参数),与交于,两点(1)写出曲线的直角坐标方程和直线的普通方程;(2)设点;若、成等比数列,求的值20(12分)如图,在四棱锥中,底面是矩形,是的中点,平面,且,()求与平面所成角的正弦()求二面角的余弦值21(12分)如图,在三棱柱中,为的中点,且.(1)求证:平面;(2)求锐二面角的余弦值.22(10分)已知定点,直线、相交于点,且它们的斜率之积为,记动点的

7、轨迹为曲线。(1)求曲线的方程;(2)过点的直线与曲线交于、两点,是否存在定点,使得直线与斜率之积为定值,若存在,求出坐标;若不存在,请说明理由。2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】因为从有2件正品和2件次品的产品中任选2件得到都是正品的概率为,即命题是错误,则是正确的;在边长为4的正方形内任取一点,若的概率为,即命题是正确的,故由符合命题的真假的判定规则可得答案 是正确的,应选答案B。点睛:本题将古典型概率公式、几何型概率公式与命题的真假(含或、且、非等连接词)的命

8、题构成的复合命题的真假的判定有机地整合在一起,旨在考查命题真假的判定及古典概型的特征与计算公式的运用、几何概型的特征与计算公式的运用等知识与方法的综合运用,以及分析问题 解决问题的能力。2、D【答案解析】由折线图逐项分析即可求解【题目详解】选项,显然正确;对于,选项正确;1.6,1.9,2.2,2.5,2.9不是等差数列,故错.故选:D【答案点睛】本题考查统计的知识,考查数据处理能力和应用意识,是基础题3、B【答案解析】设正四面体的棱长为,建立空间直角坐标系,求出各点的坐标,求出面的法向量,设的坐标,求出向量,求出线面所成角的正弦值,再由角的范围,结合为定值,得出为定值,且的轨迹为一段抛物线,

9、所以求出坐标的关系,进而求出正切值【题目详解】由题意设四面体的棱长为,设为的中点,以为坐标原点,以为轴,以为轴,过垂直于面的直线为轴,建立如图所示的空间直角坐标系,则可得,取的三等分点、如图,则,所以、,由题意设,和都是等边三角形,为的中点,平面,为平面的一个法向量,因为与平面所成角为定值,则,由题意可得,因为的轨迹为一段抛物线且为定值,则也为定值,可得,此时,则,.故选:B.【答案点睛】考查线面所成的角的求法,及正切值为定值时的情况,属于中等题4、C【答案解析】方法一:设,利用抛物线的定义判断出是的中点,结合等腰三角形的性质求得点的横坐标,根据抛物线的定义求得,进而求得.方法二:设出两点的横

10、坐标,由抛物线的定义,结合求得的关系式,联立直线的方程和抛物线方程,写出韦达定理,由此求得,进而求得.【题目详解】方法一:由题意得抛物线的准线方程为,直线恒过定点,过分别作于,于,连接,由,则,所以点为的中点,又点是的中点,则,所以,又所以由等腰三角形三线合一得点的横坐标为,所以,所以方法二:抛物线的准线方程为,直线由题意设两点横坐标分别为,则由抛物线定义得又 由得.故选:C【答案点睛】本小题主要考查抛物线的定义,考查直线和抛物线的位置关系,属于中档题.5、B【答案解析】根据条件2名内科医生,每个村一名,3名外科医生和3名护士,平均分成两组,则分1名外科,2名护士和2名外科医生和1名护士,根据

11、排列组合进行计算即可【题目详解】2名内科医生,每个村一名,有2种方法,3名外科医生和3名护士,平均分成两组,要求外科医生和护士都有,则分1名外科,2名护士和2名外科医生和1名护士,若甲村有1外科,2名护士,则有,其余的分到乙村,若甲村有2外科,1名护士,则有,其余的分到乙村,则总共的分配方案为2(9+9)=218=36种,故选:B.【答案点睛】本题主要考查了分组分配问题,解决这类问题的关键是先分组再分配,属于常考题型.6、D【答案解析】根据异面直线的判定定理、定义和性质,结合线面垂直的关系,对选项中的命题判断.【题目详解】A.假设直线与共面,则A,D,B,C共面,则AB,CD共面,与,矛盾,

12、故正确.B. 根据异面直线的性质知,过只有唯一平面与平行,故正确.C. 根据过一点有且只有一个平面与已知直线垂直知,故正确.D. 根据异面直线的性质知,过不一定能作一平面与垂直,故错误.故选:D【答案点睛】本题主要考查异面直线的定义,性质以及线面关系,还考查了理解辨析的能力,属于中档题.7、D【答案解析】构造函数,利用导数求得的单调区间,由此判断出的大小关系.【题目详解】依题意,得,.令,所以.所以函数在上单调递增,在上单调递减.所以,且,即,所以.故选:D.【答案点睛】本小题主要考查利用导数求函数的单调区间,考查化归与转化的数学思想方法,考查对数式比较大小,属于中档题.8、A【答案解析】根据

13、题意,五人分成四组,先求出两人组成一组的所有可能的分组种数,再将甲乙组成一组的情况,即可求出概率.【题目详解】五人分成四组,先选出两人组成一组,剩下的人各自成一组,所有可能的分组共有种,甲和乙分在同一组,则其余三人各自成一组,只有一种分法,与场地无关,故甲和乙恰好在同一组的概率是.故选:A.【答案点睛】本题考查组合的应用和概率的计算,属于基础题.9、C【答案解析】结合正弦定理、三角形的内角和定理、两角和的正弦公式,求得边长,由此求得边上的高.【题目详解】过作,交的延长线于.由于,所以为钝角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即边上的高为.故选:C【答案点睛】本小题主要考查正

14、弦定理解三角形,考查三角形的内角和定理、两角和的正弦公式,属于中档题.10、D【答案解析】根据双曲线的一条渐近线方程为,列出方程,求出的值即可.【题目详解】双曲线的一条渐近线方程为,可得,双曲线的离心率.故选:D.【答案点睛】本小题主要考查双曲线离心率的求法,属于基础题.11、A【答案解析】分析:首先需要去分析交换后甲盒中的红球的个数,对应的事件有哪些结果,从而得到对应的概率的大小,再者就是对随机变量的值要分清,对应的概率要算对,利用公式求得其期望.详解:根据题意有,如果交换一个球,有交换的都是红球、交换的都是蓝球、甲盒的红球换的乙盒的蓝球、甲盒的蓝球交换的乙盒的红球,红球的个数就会出现三种情况;如果交换的是两个球,有红球换红球、蓝球换蓝球、一蓝一红换一蓝一红、红换蓝、蓝换红、一蓝一红换两红、一蓝一红换亮蓝,对应的红球的个数就是五种情况,所以分析可以求得,故选A.点睛:该题考查的是有关随机事件的概率以及对应的期望的问题,在解题的过程中,需要对其对应的事件弄明白,对应的概率会算,以及变量的可取值会分析是多少,利用期望公式求得结果.12、D【答案解析】通过三角函数的对称性以及周期性

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 考试真题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2