1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1在中,内角的平分线交边于点,则的面积是( )ABCD2已知双曲线的左,右焦点分别为,O为坐标原点,P为双曲线在第一象限上的点,直线PO,分别交双曲线C的左,右支于另一点,且,则双曲线的离
2、心率为( )AB3C2D3函数在的图象大致为( )ABCD4已知数列满足,(),则数列的通项公式( )ABCD5给出下列四个命题:若“且”为假命题,则均为假命题;三角形的内角是第一象限角或第二象限角;若命题,则命题,;设集合,则“”是“”的必要条件;其中正确命题的个数是( )ABCD6已知复数满足,(为虚数单位),则( )ABCD37在中,内角所对的边分别为,若依次成等差数列,则( )A依次成等差数列B依次成等差数列C依次成等差数列D依次成等差数列8已知向量,若,则( )ABCD9某设备使用年限x(年)与所支出的维修费用y(万元)的统计数据分别为,由最小二乘法得到回归直线方程为,若计划维修费用
3、超过15万元将该设备报废,则该设备的使用年限为( )A8年B9年C10年D11年10已知双曲线的左、右顶点分别为,点是双曲线上与不重合的动点,若, 则双曲线的离心率为()ABC4D211对于任意,函数满足,且当时,函数.若,则大小关系是( )ABCD12是的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13已知为抛物线:的焦点,过作两条互相垂直的直线,直线与交于、两点,直线与交于、两点,则的最小值为_14某外商计划在个候选城市中投资个不同的项目,且在同一个城市投资的项目不超过个,则该外商不同的投资方案有_种15若展开式的二
4、项式系数之和为64,则展开式各项系数和为_16若、满足约束条件,则的最小值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知椭圆的左、右焦点分别为,离心率为,为椭圆上一动点(异于左右顶点),面积的最大值为(1)求椭圆的方程;(2)若直线与椭圆相交于点两点,问轴上是否存在点,使得是以为直角顶点的等腰直角三角形?若存在,求点的坐标;若不存在,请说明理由18(12分)在ABC中,角A,B,C的对边分别是a,b,c,.(1)求cosC;(2)若b7,D是BC边上的点,且ACD的面积为,求sinADB.19(12分)设函数,()讨论的单调性;()时,若,求证:20(1
5、2分)已知椭圆:的四个顶点围成的四边形的面积为,原点到直线的距离为.(1)求椭圆的方程;(2)已知定点,是否存在过的直线,使与椭圆交于,两点,且以为直径的圆过椭圆的左顶点?若存在,求出的方程:若不存在,请说明理由.21(12分)设函数.(1)当时,求不等式的解集;(2)若对恒成立,求的取值范围.22(10分)如图,在四棱锥中,底面是矩形,是的中点,平面,且,()求与平面所成角的正弦()求二面角的余弦值2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】利用正弦定理求出,可得出,然后利
6、用余弦定理求出,进而求出,然后利用三角形的面积公式可计算出的面积.【题目详解】为的角平分线,则.,则,在中,由正弦定理得,即,在中,由正弦定理得,即,得,解得,由余弦定理得,因此,的面积为.故选:B.【答案点睛】本题考查三角形面积的计算,涉及正弦定理和余弦定理以及三角形面积公式的应用,考查计算能力,属于中等题.2、D【答案解析】本道题结合双曲线的性质以及余弦定理,建立关于a与c的等式,计算离心率,即可【题目详解】结合题意,绘图,结合双曲线性质可以得到PO=MO,而,结合四边形对角线平分,可得四边形为平行四边形,结合,故对三角形运用余弦定理,得到,而结合,可得,代入上式子中,得到,结合离心率满足
7、,即可得出,故选D【答案点睛】本道题考查了余弦定理以及双曲线的性质,难度偏难3、B【答案解析】先考虑奇偶性,再考虑特殊值,用排除法即可得到正确答案.【题目详解】是奇函数,排除C,D;,排除A.故选:B.【答案点睛】本题考查函数图象的判断,属于常考题.4、A【答案解析】利用数列的递推关系式,通过累加法求解即可【题目详解】数列满足:,可得以上各式相加可得:,故选:【答案点睛】本题考查数列的递推关系式的应用,数列累加法以及通项公式的求法,考查计算能力5、B【答案解析】利用真假表来判断,考虑内角为,利用特称命题的否定是全称命题判断,利用集合间的包含关系判断.【题目详解】若“且”为假命题,则中至少有一个
8、是假命题,故错误;当内角为时,不是象限角,故错误;由特称命题的否定是全称命题知正确;因为,所以,所以“”是“”的必要条件,故正确.故选:B.【答案点睛】本题考查命题真假的问题,涉及到“且”命题、特称命题的否定、象限角、必要条件等知识,是一道基础题.6、A【答案解析】,故,故选A.7、C【答案解析】由等差数列的性质、同角三角函数的关系以及两角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,从而可得结果.【题目详解】依次成等差数列, 正弦定理得,由余弦定理得 ,即依次成等差数列,故选C.【答案点睛】本题主要考查等差数列的定义、正弦定理、余弦定理,属于难题. 解三角形时,有时可用正弦定理,有时也
9、可用余弦定理,应注意用哪一个定理更方便、简捷如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到8、A【答案解析】利用平面向量平行的坐标条件得到参数x的值.【题目详解】由题意得,解得.故选A.【答案点睛】本题考查向量平行定理,考查向量的坐标运算,属于基础题.9、D【答案解析】根据样本中心点在回归直线上,求出,求解,即可求出答案.【题目详解】依题意在回归直线上,由,估计第年维修费用超过15万元.故选:D.【答案点睛】本题考查回归直线过样本中心点、以及回归方程的应用,属于基础题.10、D
10、【答案解析】设,根据可得,再根据又,由可得,化简可得,即可求出离心率【题目详解】解:设,即,又,由可得,即,故选:D【答案点睛】本题考查双曲线的方程和性质,考查了斜率的计算,离心率的求法,属于基础题和易错题11、A【答案解析】由已知可得的单调性,再由可得对称性,可求出在单调性,即可求出结论.【题目详解】对于任意,函数满足,因为函数关于点对称,当时,是单调增函数,所以在定义域上是单调增函数.因为,所以,.故选:A.【答案点睛】本题考查利用函数性质比较函数值的大小,解题的关键要掌握函数对称性的代数形式,属于中档题.12、B【答案解析】分别判断充分性和必要性得到答案.【题目详解】所以 (逆否命题)必
11、要性成立当,不充分故是必要不充分条件,答案选B【答案点睛】本题考查了充分必要条件,属于简单题.二、填空题:本题共4小题,每小题5分,共20分。13、16.【答案解析】由题意可知抛物线的焦点,准线为设直线的解析式为直线互相垂直的斜率为与抛物线的方程联立,消去得设点由跟与系数的关系得,同理根据抛物线的性质,抛物线上的点到焦点的距离等于到准线的距离,同理,当且仅当时取等号.故答案为16点睛:(1)与抛物线有关的最值问题,一般情况下都与抛物线的定义有关利用定义可将抛物线上的点到焦点的距离转化为到准线的距离,可以使运算化繁为简“看到准线想焦点,看到焦点想准线”,这是解决抛物线焦点弦有关问题的重要途径;(
12、2)圆锥曲线中的最值问题,可利用基本不等式求解,但要注意不等式成立的条件14、60【答案解析】试题分析:每个城市投资1个项目有种,有一个城市投资2个有种,投资方案共种.考点:排列组合.15、1【答案解析】由题意得展开式的二项式系数之和求出的值,然后再计算展开式各项系数的和.【题目详解】由题意展开式的二项式系数之和为,即,故,令,则展开式各项系数的和为.故答案为:【答案点睛】本题考查了二项展开式的二项式系数和项的系数和问题,需要运用定义加以区分,并能够运用公式和赋值法求解结果,需要掌握解题方法.16、【答案解析】作出不等式组所表示的可行域,利用平移直线的方法找出使得目标函数取得最小时对应的最优解
13、,代入目标函数计算即可.【题目详解】作出不等式组所表示的可行域如下图所示:联立,解得,即点,平移直线,当直线经过可行域的顶点时,该直线在轴上的截距最小,此时取最小值,即.故答案为:.【答案点睛】本题考查简单的线性规划问题,考查线性目标函数的最值问题,考查数形结合思想的应用,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析【答案解析】(1)由面积最大值可得,又,以及,解得,即可得到椭圆的方程,(2)假设轴上存在点,是以为直角顶点的等腰直角三角形,设,线段的中点为,根据韦达定理求出点的坐标,再根据,即可求出的值,可得点的坐标.【题目详解】(1)面
14、积的最大值为,则:又,解得:,椭圆的方程为:(2)假设轴上存在点,是以为直角顶点的等腰直角三角形设,线段的中点为由,消去可得:,解得:, 依题意有,由可得:,可得:由可得:,代入上式化简可得:则:,解得:当时,点满足题意;当时,点满足题意故轴上存在点,使得是以为直角顶点的等腰直角三角形【答案点睛】本题考查了椭圆的方程,直线和椭圆的位置关系,斜率公式,考查了运算能力和转化能力,属于中档题.18、(1);(2).【答案解析】(1)根据诱导公式和二倍角公式,将已知等式化为角关系式,求出,再由二倍角余弦公式,即可求解;(2)在中,根据面积公式求出长,根据余弦定理求出,由正弦定理求出,即可求出结论.【题目详解】(1