收藏 分享(赏)

2023届上海市普陀区上海师大附中高三最后一卷数学试卷(含解析).doc

上传人:la****1 文档编号:13331 上传时间:2023-01-06 格式:DOC 页数:16 大小:1.45MB
下载 相关 举报
2023届上海市普陀区上海师大附中高三最后一卷数学试卷(含解析).doc_第1页
第1页 / 共16页
2023届上海市普陀区上海师大附中高三最后一卷数学试卷(含解析).doc_第2页
第2页 / 共16页
2023届上海市普陀区上海师大附中高三最后一卷数学试卷(含解析).doc_第3页
第3页 / 共16页
2023届上海市普陀区上海师大附中高三最后一卷数学试卷(含解析).doc_第4页
第4页 / 共16页
2023届上海市普陀区上海师大附中高三最后一卷数学试卷(含解析).doc_第5页
第5页 / 共16页
2023届上海市普陀区上海师大附中高三最后一卷数学试卷(含解析).doc_第6页
第6页 / 共16页
亲,该文档总共16页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,则下列不等式正确的是( )ABCD2已知,则下列说法中正确的是( )A是假命题B是真命题C是真命题D是假命题3设,则( )ABCD4已知复数满足,则的最大值为( )ABCD653本不同的语文书,2本不同的数学书,从中任意取出2本,取出

2、的书恰好都是数学书的概率是( )ABCD6已知函数,若不等式对任意的恒成立,则实数k的取值范围是( )ABCD7设,是两条不同的直线,是两个不同的平面,下列命题中正确的是( )A若,则B若,则C若,则D若,则8一个封闭的棱长为2的正方体容器,当水平放置时,如图,水面的高度正好为棱长的一半若将该正方体绕下底面(底面与水平面平行)的某条棱任意旋转,则容器里水面的最大高度为( )ABCD9已知m,n为异面直线,m平面,n平面,直线l满足l m,l n,则( )A且B且C与相交,且交线垂直于D与相交,且交线平行于10中国古代数学著作算法统宗中有这样一个问题;“三百七十八里关,初行健步不为难,次后脚痛递

3、减半,六朝才得到其关,要见每朝行里数,请公仔细算相还.”其意思为:“有一个人走了378里路,第一天健步走行,从第二天起脚痛每天走的路程是前一天的一半,走了6天后到达目的地,求该人每天走的路程.”由这个描述请算出这人第四天走的路程为( )A6里B12里C24里D48里11中国铁路总公司相关负责人表示,到2018年底,全国铁路营业里程达到13.1万公里,其中高铁营业里程2.9万公里,超过世界高铁总里程的三分之二,下图是2014年到2018年铁路和高铁运营里程(单位:万公里)的折线图,以下结论不正确的是( )A每相邻两年相比较,2014年到2015年铁路运营里程增加最显著B从2014年到2018年这

4、5年,高铁运营里程与年价正相关C2018年高铁运营里程比2014年高铁运营里程增长80%以上D从2014年到2018年这5年,高铁运营里程数依次成等差数列12某几何体的三视图如图所示,则该几何体的体积是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知在等差数列中,前n项和为,则_.14现有一块边长为a的正方形铁片,铁片的四角截去四个边长均为x的小正方形,然后做成一个无盖方盒,该方盒容积的最大值是_15已知双曲线的左右焦点分别关于两渐近线对称点重合,则双曲线的离心率为_16在直角坐标系中,某等腰直角三角形的两个顶点坐标分别为,函数的图象经过该三角形的三个顶点,则的解析式为_

5、.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在直角坐标系中,圆的参数方程为(为参数),以为极点,轴的非负半轴为极轴建立极坐标系.(1)求圆的极坐标方程;(2)直线的极坐标方程是,射线与圆的交点为、,与直线的交点为,求线段的长.18(12分)已知首项为2的数列满足.(1)证明:数列是等差数列(2)令,求数列的前项和.19(12分)在中,角的对边分别为,且.(1)求角的大小;(2)已知外接圆半径,求的周长.20(12分)中的内角,的对边分别是,若,.(1)求;(2)若,点为边上一点,且,求的面积.21(12分)已知在中,a、b、c分别为角A、B、C的对边,且(1)

6、求角A的值;(2)若,设角,周长为y,求的最大值22(10分)已知动圆经过点,且动圆被轴截得的弦长为,记圆心的轨迹为曲线(1)求曲线的标准方程;(2)设点的横坐标为,为圆与曲线的公共点,若直线的斜率,且,求的值2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】利用特殊值代入法,作差法,排除不符合条件的选项,得到符合条件的选项【题目详解】已知,赋值法讨论的情况:(1)当时,令,则,排除B、C选项;(2)当时,令,则,排除A选项.故选:D.【答案点睛】比较大小通常采用作差法,本题主要考

7、查不等式与不等关系,不等式的基本性质,利用特殊值代入法,排除不符合条件的选项,得到符合条件的选项,是一种简单有效的方法,属于中等题2、D【答案解析】举例判断命题p与q的真假,再由复合命题的真假判断得答案【题目详解】当时,故命题为假命题;记f(x)exx的导数为f(x)ex,易知f(x)exx(,0)上递减,在(0,)上递增,f(x)f(0)0,即,故命题为真命题;是假命题故选D【答案点睛】本题考查复合命题的真假判断,考查全称命题与特称命题的真假,考查指对函数的图象与性质,是基础题3、D【答案解析】集合是一次不等式的解集,分别求出再求交集即可【题目详解】,则故选【答案点睛】本题主要考查了一次不等

8、式的解集以及集合的交集运算,属于基础题4、B【答案解析】设,利用复数几何意义计算.【题目详解】设,由已知,所以点在单位圆上,而,表示点到的距离,故.故选:B.【答案点睛】本题考查求复数模的最大值,其实本题可以利用不等式来解决.5、D【答案解析】把5本书编号,然后用列举法列出所有基本事件计数后可求得概率【题目详解】3本不同的语文书编号为,2本不同的数学书编号为,从中任意取出2本,所有的可能为:共10个,恰好都是数学书的只有一种,所求概率为故选:D.【答案点睛】本题考查古典概型,解题方法是列举法,用列举法写出所有的基本事件,然后计数计算概率6、A【答案解析】先求出函数在处的切线方程,在同一直角坐标

9、系内画出函数和的图象,利用数形结合进行求解即可.【题目详解】当时,所以函数在处的切线方程为:,令,它与横轴的交点坐标为.在同一直角坐标系内画出函数和的图象如下图的所示:利用数形结合思想可知:不等式对任意的恒成立,则实数k的取值范围是.故选:A【答案点睛】本题考查了利用数形结合思想解决不等式恒成立问题,考查了导数的应用,属于中档题.7、D【答案解析】试题分析:,,故选D.考点:点线面的位置关系.8、B【答案解析】根据已知可知水面的最大高度为正方体面对角线长的一半,由此得到结论【题目详解】正方体的面对角线长为,又水的体积是正方体体积的一半,且正方体绕下底面(底面与水平面平行)的某条棱任意旋转,所以

10、容器里水面的最大高度为面对角线长的一半,即最大水面高度为,故选B.【答案点睛】本题考查了正方体的几何特征,考查了空间想象能力,属于基础题9、D【答案解析】试题分析:由平面,直线满足,且,所以,又平面,所以,由直线为异面直线,且平面平面,则与相交,否则,若则推出,与异面矛盾,所以相交,且交线平行于,故选D考点:平面与平面的位置关系,平面的基本性质及其推论10、C【答案解析】设第一天走里,则是以为首项,以为公比的等比数列,由题意得,求出(里,由此能求出该人第四天走的路程【题目详解】设第一天走里,则是以为首项,以为公比的等比数列,由题意得:,解得(里,(里故选:C【答案点睛】本题考查等比数列的某一项

11、的求法,考查等比数列等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题11、D【答案解析】由折线图逐项分析即可求解【题目详解】选项,显然正确;对于,选项正确;1.6,1.9,2.2,2.5,2.9不是等差数列,故错.故选:D【答案点睛】本题考查统计的知识,考查数据处理能力和应用意识,是基础题12、A【答案解析】观察可知,这个几何体由两部分构成,:一个半圆柱体,底面圆的半径为1,高为2;一个半球体,半径为1,按公式计算可得体积。【题目详解】设半圆柱体体积为,半球体体积为,由题得几何体体积为,故选A。【答案点睛】本题通过三视图考察空间识图的能力,属于基础题。二

12、、填空题:本题共4小题,每小题5分,共20分。13、39【答案解析】设等差数列公差为d,首项为,再利用基本量法列式求解公差与首项,进而求得即可.【题目详解】设等差数列公差为d,首项为,根据题意可得,解得,所以.故答案为:39【答案点睛】本题考查等差数列的基本量计算以及前n项和的公式,属于基础题.14、【答案解析】由题意容积,求导研究单调性,分析即得解.【题目详解】由题意:容积,则,由得或(舍去),令则为V在定义域内唯一的极大值点也是最大值点,此时.故答案为:【答案点睛】本题考查了导数在实际问题中的应用,考查了学生数学建模,转化划归,数学运算的能力,属于中档题.15、【答案解析】双曲线的左右焦点

13、分别关于两条渐近线的对称点重合,可得一条渐近线的斜率为1,即,即可求出双曲线的离心率【题目详解】解:双曲线的左右焦点分别关于两条渐近线的对称点重合,一条渐近线的斜率为1,即,故答案为:【答案点睛】本题考查双曲线的离心率,考查学生的计算能力,确定一条渐近线的斜率为1是关键,属于基础题16、【答案解析】结合题意先画出直角坐标系,点出所有可能组成等腰直角三角形的点,采用排除法最终可确定为点,再由函数性质进一步求解参数即可【题目详解】等腰直角三角形的第三个顶点可能的位置如下图中的点,其中点与已有的两个顶点横坐标重复,舍去;若为点则点与点的中间位置的点的纵坐标必然大于或小于,不可能为,因此点也舍去,只有

14、点满足题意.此时点为最大值点,所以,又,则,所以点,之间的图像单调,将,代入的表达式有由知,因此.故答案为:【答案点睛】本题考查由三角函数图像求解解析式,数形结合思想,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【答案解析】(1)首先将参数方程转化为普通方程再根据公式化为极坐标方程即可;(2)设,由,即可求出,则计算可得;【题目详解】解:(1)圆的参数方程(为参数)可化为,即圆的极坐标方程为.(2)设,由,解得.设,由,解得.,.【答案点睛】本题考查了利用极坐标方程求曲线的交点弦长,考查了推理能力与计算能力,属于中档题18、(1)见解析;(2)【答案解析】(1)由原式可得,等式两端同时除以,可得到,即可证明结论;(2)由(1)可求得的表达式,进而可求得的表达式,然后求出的前项和即可.【题目详解】(

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 考试真题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2