收藏 分享(赏)

2023学年黑龙江省齐齐哈尔实验中学高三3月份第一次模拟考试数学试卷(含解析).doc

上传人:g****t 文档编号:13350 上传时间:2023-01-06 格式:DOC 页数:19 大小:1.72MB
下载 相关 举报
2023学年黑龙江省齐齐哈尔实验中学高三3月份第一次模拟考试数学试卷(含解析).doc_第1页
第1页 / 共19页
2023学年黑龙江省齐齐哈尔实验中学高三3月份第一次模拟考试数学试卷(含解析).doc_第2页
第2页 / 共19页
2023学年黑龙江省齐齐哈尔实验中学高三3月份第一次模拟考试数学试卷(含解析).doc_第3页
第3页 / 共19页
2023学年黑龙江省齐齐哈尔实验中学高三3月份第一次模拟考试数学试卷(含解析).doc_第4页
第4页 / 共19页
2023学年黑龙江省齐齐哈尔实验中学高三3月份第一次模拟考试数学试卷(含解析).doc_第5页
第5页 / 共19页
2023学年黑龙江省齐齐哈尔实验中学高三3月份第一次模拟考试数学试卷(含解析).doc_第6页
第6页 / 共19页
亲,该文档总共19页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合,则集合( )ABCD2已知向量,且,则m=( )A8B6C6D83设全集集合,则( )ABCD4若双曲线:的一条渐近线方程为,则( )ABCD5已知双曲线的一条渐近线方程为,则双曲线的离心率为( )ABCD6已知命题:,则为( )

2、A,B,C,D,7盒中装有形状、大小完全相同的5张“刮刮卡”,其中只有2张“刮刮卡”有奖,现甲从盒中随机取出2张,则至少有一张有奖的概率为( )ABCD8已知三棱锥的外接球半径为2,且球心为线段的中点,则三棱锥的体积的最大值为( )ABCD9已知向量,则向量在向量方向上的投影为( )ABCD10为了研究国民收入在国民之间的分配,避免贫富过分悬殊,美国统计学家劳伦茨提出了著名的劳伦茨曲线,如图所示.劳伦茨曲线为直线时,表示收入完全平等.劳伦茨曲线为折线时,表示收入完全不平等.记区域为不平等区域,表示其面积,为的面积,将称为基尼系数.对于下列说法:越小,则国民分配越公平;设劳伦茨曲线对应的函数为,

3、则对,均有;若某国家某年的劳伦茨曲线近似为,则;若某国家某年的劳伦茨曲线近似为,则.其中正确的是:ABCD11设点,P为曲线上动点,若点A,P间距离的最小值为,则实数t的值为( )ABCD12如图,在平行四边形中,为对角线的交点,点为平行四边形外一点,且,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13将函数的图象向左平移个单位长度,得到一个偶函数图象,则_14在各项均为正数的等比数列中,且,成等差数列,则_.15已知,其中,为正的常数,且,则的值为_.16若,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)等差数列中,分别是下表第一、二、

4、三行中的某一个数,且其中的任何两个数不在下表的同一列.第一列第二列第三列第一行582第二行4312第三行1669(1)请选择一个可能的组合,并求数列的通项公式;(2)记(1)中您选择的的前项和为,判断是否存在正整数,使得,成等比数列,若有,请求出的值;若没有,请说明理由.18(12分)如图,四棱锥中,四边形是矩形,为正三角形,且平面平面,、分别为、的中点.(1)证明:平面;(2)求几何体的体积.19(12分)在中,(1)求的值;(2)点为边上的动点(不与点重合),设,求的取值范围20(12分)某校为了解校园安全教育系列活动的成效,对全校学生进行了一次安全意识测试,根据测试成绩评定“合格”“不合

5、格”两个等级,同时对相应等级进行量化:“合格”记5分,“不合格”记0分现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如下:等级不合格合格得分频数624(1)由该题中频率分布直方图求测试成绩的平均数和中位数;(2)其他条件不变,在评定等级为“合格”的学生中依次抽取2人进行座谈,每次抽取1人,求在第1次抽取的测试得分低于80分的前提下,第2次抽取的测试得分仍低于80分的概率;(3)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中抽取10人进行座谈现再从这10人中任选4人,记所选4人的量化总分为,求的数学期望21(12分)某房地产开发商在其开发的某小区前修建了一个弓形景观湖如图,

6、该弓形所在的圆是以为直径的圆,且米,景观湖边界与平行且它们间的距离为米开发商计划从点出发建一座景观桥(假定建成的景观桥的桥面与地面和水面均平行),桥面在湖面上的部分记作设(1)用表示线段并确定的范围;(2)为了使小区居民可以充分地欣赏湖景,所以要将的长度设计到最长,求的最大值22(10分)2019年底,北京2023年冬奥组委会启动志愿者全球招募,仅一个月内报名人数便突破60万,其中青年学生约有50万人.现从这50万青年学生志愿者中,按男女分层抽样随机选取20人进行英语水平测试,所得成绩(单位:分)统计结果用茎叶图记录如下:()试估计在这50万青年学生志愿者中,英语测试成绩在80分以上的女生人数

7、;()从选出的8名男生中随机抽取2人,记其中测试成绩在70分以上的人数为X,求的分布列和数学期望;()为便于联络,现将所有的青年学生志愿者随机分成若干组(每组人数不少于5000),并在每组中随机选取个人作为联络员,要求每组的联络员中至少有1人的英语测试成绩在70分以上的概率大于90%.根据图表中数据,以频率作为概率,给出的最小值.(结论不要求证明)2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】根据集合的混合运算,即可容易求得结果.【题目详解】,故可得.故选:D.【答案点睛】本题

8、考查集合的混合运算,属基础题.2、D【答案解析】由已知向量的坐标求出的坐标,再由向量垂直的坐标运算得答案【题目详解】,又,34+(2)(m2)0,解得m1故选D【答案点睛】本题考查平面向量的坐标运算,考查向量垂直的坐标运算,属于基础题3、A【答案解析】先求出,再与集合N求交集.【题目详解】由已知,又,所以.故选:A.【答案点睛】本题考查集合的基本运算,涉及到补集、交集运算,是一道容易题.4、A【答案解析】根据双曲线的渐近线列方程,解方程求得的值.【题目详解】由题意知双曲线的渐近线方程为,可化为,则,解得.故选:A【答案点睛】本小题主要考查双曲线的渐近线,属于基础题.5、B【答案解析】由题意得出

9、的值,进而利用离心率公式可求得该双曲线的离心率.【题目详解】双曲线的渐近线方程为,由题意可得,因此,该双曲线的离心率为.故选:B.【答案点睛】本题考查利用双曲线的渐近线方程求双曲线的离心率,利用公式计算较为方便,考查计算能力,属于基础题.6、C【答案解析】根据全称量词命题的否定是存在量词命题,即得答案.【题目详解】全称量词命题的否定是存在量词命题,且命题:,.故选:.【答案点睛】本题考查含有一个量词的命题的否定,属于基础题.7、C【答案解析】先计算出总的基本事件的个数,再计算出两张都没获奖的个数,根据古典概型的概率,求出两张都没有奖的概率,由对立事件的概率关系,即可求解.【题目详解】从5张“刮

10、刮卡”中随机取出2张,共有种情况,2张均没有奖的情况有(种),故所求概率为.故选:C.【答案点睛】本题考查古典概型的概率、对立事件的概率关系,意在考查数学建模、数学计算能力,属于基础题.8、C【答案解析】由题可推断出和都是直角三角形,设球心为,要使三棱锥的体积最大,则需满足,结合几何关系和图形即可求解【题目详解】先画出图形,由球心到各点距离相等可得,故是直角三角形,设,则有,又,所以,当且仅当时,取最大值4,要使三棱锥体积最大,则需使高,此时,故选:C【答案点睛】本题考查由三棱锥外接球半径,半径与球心位置求解锥体体积最值问题,属于基础题9、A【答案解析】投影即为,利用数量积运算即可得到结论.【

11、题目详解】设向量与向量的夹角为,由题意,得,所以,向量在向量方向上的投影为.故选:A.【答案点睛】本题主要考察了向量的数量积运算,难度不大,属于基础题.10、A【答案解析】对于,根据基尼系数公式,可得基尼系数越小,不平等区域的面积越小,国民分配越公平,所以正确.对于,根据劳伦茨曲线为一条凹向横轴的曲线,由图得,均有,可得,所以错误.对于,因为,所以,所以错误.对于,因为,所以,所以正确.故选A11、C【答案解析】设,求,作为的函数,其最小值是6,利用导数知识求的最小值【题目详解】设,则,记,易知是增函数,且的值域是,的唯一解,且时,时,即,由题意,而,解得,故选:C【答案点睛】本题考查导数的应

12、用,考查用导数求最值解题时对和的关系的处理是解题关键12、D【答案解析】连接,根据题目,证明出四边形为平行四边形,然后,利用向量的线性运算即可求出答案【题目详解】连接,由,知,四边形为平行四边形,可得四边形为平行四边形,所以.【答案点睛】本题考查向量的线性运算问题,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】根据平移后关于轴对称可知关于对称,进而利用特殊值构造方程,从而求得结果.【题目详解】向左平移个单位长度后得到偶函数图象,即关于轴对称关于对称 即: 本题正确结果:【答案点睛】本题考查根据三角函数的对称轴求解参数值的问题,关键是能够通过平移后的对称轴得到原函数

13、的对称轴,进而利用特殊值的方式来进行求解.14、【答案解析】利用等差中项的性质和等比数列通项公式得到关于的方程,解方程求出代入等比数列通项公式即可.【题目详解】因为,成等差数列,所以,由等比数列通项公式得,所以,解得或,因为,所以,所以等比数列的通项公式为.故答案为:【答案点睛】本题考查等差中项的性质和等比数列通项公式;考查运算求解能力和知识 综合运用能力;熟练掌握等差中项和等比数列通项公式是求解本题的关键;属于中档题.15、【答案解析】把已知等式变形,展开两角和与差的三角函数,结合已知求得值【题目详解】解:由,得,即,又,解得:为正的常数,故答案为:【答案点睛】本题考查两角和与差的三角函数,考查数学转化思想方法,属于中档题16、【答案解析】因为,所以.因为,所以,又,所以,所以.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析,或;(2)存在,.【答案解析】(1)满足题意有两种组合:,分别计算即可;(2)由(1)分别讨论两种情况,假设存在正整数,使得,成等比数列,即,解方程是否存在正整数解即可.【题目详解】(1)由题意可知:有两种组合满足条件:,此时等差数列,所以其通项公式为.,此时等差数列,所以其通项公式为.(2)若选择,.则.若,成等比数列,则,即,整理,得,即,此方程无正整数解,故不存在正整数,使,成等比数列.若选则,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 考试真题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2