收藏 分享(赏)

2023学年黑龙江省高中学高三第六次模拟考试数学试卷(含解析).doc

上传人:sc****y 文档编号:13351 上传时间:2023-01-06 格式:DOC 页数:19 大小:1.64MB
下载 相关 举报
2023学年黑龙江省高中学高三第六次模拟考试数学试卷(含解析).doc_第1页
第1页 / 共19页
2023学年黑龙江省高中学高三第六次模拟考试数学试卷(含解析).doc_第2页
第2页 / 共19页
2023学年黑龙江省高中学高三第六次模拟考试数学试卷(含解析).doc_第3页
第3页 / 共19页
2023学年黑龙江省高中学高三第六次模拟考试数学试卷(含解析).doc_第4页
第4页 / 共19页
2023学年黑龙江省高中学高三第六次模拟考试数学试卷(含解析).doc_第5页
第5页 / 共19页
2023学年黑龙江省高中学高三第六次模拟考试数学试卷(含解析).doc_第6页
第6页 / 共19页
亲,该文档总共19页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1关于函数在区间的单调性,下列叙述正确的是( )A单调递增B单调递减C先递减后递增D先递增后递减2设是虚数单位,则( )

2、ABC1D23在平面直角坐标系中,经过点,渐近线方程为的双曲线的标准方程为( )ABCD4已知函数满足,且,则不等式的解集为( )ABCD5函数(其中,)的图象如图,则此函数表达式为( )ABCD6中国古典乐器一般按“八音”分类这是我国最早按乐器的制造材料来对乐器进行分类的方法,最先见于周礼春官大师,分为“金、石、土、革、丝、木、匏(po)、竹”八音,其中“金、石、木、革”为打击乐器,“土、匏、竹”为吹奏乐器,“丝”为弹拨乐器现从“八音”中任取不同的“两音”,则含有打击乐器的概率为( )ABCD7已知数列是公差为的等差数列,且成等比数列,则( )A4B3C2D18将函数的图象分别向右平移个单位

3、长度与向左平移(0)个单位长度,若所得到的两个图象重合,则的最小值为( )ABCD9设是虚数单位,则“复数为纯虚数”是“”的( )A充要条件B必要不充分条件C既不充分也不必要条件D充分不必要条件10已知,则的大小关系为ABCD11如图,内接于圆,是圆的直径,则三棱锥体积的最大值为( )ABCD12如图所示的程序框图,若输入,则输出的结果是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13定义在上的奇函数满足,并且当时,则_14已知函数f(x)=axlnxbx(a,bR)在点(e,f(e)处的切线方程为y=3xe,则a+b=_.15设、分别为椭圆:的左、右两个焦点,过作斜率为1的

4、直线,交于、两点,则_16已知三棱锥的四个顶点在球的球面上,是边长为2的正三角形,则球的体积为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)棉花的纤维长度是评价棉花质量的重要指标,某农科所的专家在土壤环境不同的甲、乙两块实验地分别种植某品种的棉花,为了评价该品种的棉花质量,在棉花成熟后,分别从甲、乙两地的棉花中各随机抽取21根棉花纤维进行统计,结果如下表:(记纤维长度不低于311的为“长纤维”,其余为“短纤维”)纤维长度甲地(根数)34454乙地(根数)112116(1)由以上统计数据,填写下面列联表,并判断能否在犯错误概率不超过1.125的前提下认为“纤维长度

5、与土壤环境有关系”.甲地乙地总计长纤维短纤维总计附:(1);(2)临界值表;1111.151.1251.1111.1151.1112.7163.8415.1246.6357.87911.828(2)现从上述41根纤维中,按纤维长度是否为“长纤维”还是“短纤维”采用分层抽样的方法抽取8根进行检测,在这8根纤维中,记乙地“短纤维”的根数为,求的分布列及数学期望.18(12分)新高考,取消文理科,实行“”,成绩由语文、数学、外语统一高考成绩和自主选考的3门普通高中学业水平考试等级性考试科目成绩构成.为了解各年龄层对新高考的了解情况,随机调查50人(把年龄在称为中青年,年龄在称为中老年),并把调查结果

6、制成下表:年龄(岁)频数515101055了解4126521(1)分别估计中青年和中老年对新高考了解的概率;(2)请根据上表完成下面列联表,是否有95%的把握判断对新高考的了解与年龄(中青年、中老年)有关?了解新高考不了解新高考总计中青年中老年总计附:.0.0500.0100.0013.8416.63510.828(3)若从年龄在的被调查者中随机选取3人进行调查,记选中的3人中了解新高考的人数为,求的分布列以及.19(12分)如图,四棱锥VABCD中,底面ABCD是菱形,对角线AC与BD交于点O,VO平面ABCD,E是棱VC的中点(1)求证:VA平面BDE;(2)求证:平面VAC平面BDE20

7、(12分)在直角坐标系中,曲线的参数方程为(为参数,),点.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程,并指出其形状;(2)曲线与曲线交于,两点,若,求的值.21(12分)已知直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,且曲线的左焦点在直线上.()求的极坐标方程和曲线的参数方程;()求曲线的内接矩形的周长的最大值.22(10分)在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的参数方程为(为参数),直线经过点且倾斜角为.(1)求曲线的极坐标方程和直线的参数方程;(2)已知直线

8、与曲线交于,满足为的中点,求.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】先用诱导公式得,再根据函数图像平移的方法求解即可.【题目详解】函数的图象可由向左平移个单位得到,如图所示,在上先递减后递增.故选:C【答案点睛】本题考查三角函数的平移与单调性的求解.属于基础题.2、C【答案解析】由,可得,通过等号左右实部和虚部分别相等即可求出的值.【题目详解】解:, ,解得:.故选:C.【答案点睛】本题考查了复数的运算,考查了复数相等的涵义.对于复数的运算类问题,易错点是把 当成进行运

9、算.3、B【答案解析】根据所求双曲线的渐近线方程为,可设所求双曲线的标准方程为k再把点代入,求得 k的值,可得要求的双曲线的方程【题目详解】双曲线的渐近线方程为设所求双曲线的标准方程为k又在双曲线上,则k=16-2=14,即双曲线的方程为双曲线的标准方程为故选:B【答案点睛】本题主要考查用待定系数法求双曲线的方程,双曲线的定义和标准方程,以及双曲线的简单性质的应用,属于基础题4、B【答案解析】构造函数,利用导数研究函数的单调性,即可得到结论.【题目详解】设,则函数的导数,,即函数为减函数,,则不等式等价为,则不等式的解集为,即的解为,由得或,解得或,故不等式的解集为.故选:.【答案点睛】本题主

10、要考查利用导数研究函数单调性,根据函数的单调性解不等式,考查学生分析问题解决问题的能力,是难题.5、B【答案解析】由图象的顶点坐标求出,由周期求出,通过图象经过点,求出,从而得出函数解析式.【题目详解】解:由图象知,则,图中的点应对应正弦曲线中的点,所以,解得,故函数表达式为故选:B.【答案点睛】本题主要考查三角函数图象及性质,三角函数的解析式等基础知识;考查考生的化归与转化思想,数形结合思想,属于基础题.6、B【答案解析】分别求得所有基本事件个数和满足题意的基本事件个数,根据古典概型概率公式可求得结果.【题目详解】从“八音”中任取不同的“两音”共有种取法;“两音”中含有打击乐器的取法共有种取

11、法;所求概率.故选:.【答案点睛】本题考查古典概型概率问题的求解,关键是能够利用组合的知识求得基本事件总数和满足题意的基本事件个数.7、A【答案解析】根据等差数列和等比数列公式直接计算得到答案.【题目详解】由成等比数列得,即,已知,解得.故选:.【答案点睛】本题考查了等差数列,等比数列的基本量的计算,意在考查学生的计算能力.8、B【答案解析】首先根据函数的图象分别向左与向右平移m,n个单位长度后,所得的两个图像重合,那么,利用的最小正周期为,从而求得结果.【题目详解】的最小正周期为,那么(),于是,于是当时,最小值为,故选B.【答案点睛】该题考查的是有关三角函数的周期与函数图象平移之间的关系,

12、属于简单题目.9、D【答案解析】结合纯虚数的概念,可得,再结合充分条件和必要条件的定义即可判定选项.【题目详解】若复数为纯虚数,则,所以,若,不妨设,此时复数,不是纯虚数,所以“复数为纯虚数”是“”的充分不必要条件.故选:D【答案点睛】本题考查充分条件和必要条件,考查了纯虚数的概念,理解充分必要条件的逻辑关系是解题的关键,属于基础题.10、D【答案解析】分析:由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a,b,c的大小关系.详解:由题意可知:,即,即,即,综上可得:.本题选择D选项.点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指

13、数不相同,不能直接利用函数的单调性进行比较这就必须掌握一些特殊方法在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确11、B【答案解析】根据已知证明平面,只要设,则,从而可得体积,利用基本不等式可得最大值【题目详解】因为,所以四边形为平行四边形.又因为平面,平面,所以平面,所以平面.在直角三角形中,设,则,所以,所以.又因为,当且仅当,即时等号成立,所以.故选:B【答案点睛】本题考查求棱锥体积的最大值解题方法是:首先证明线面垂直同,得棱锥的高,然后设出底面三角形一边长为,用建

14、立体积与边长的函数关系,由基本不等式得最值,或由函数的性质得最值12、B【答案解析】列举出循环的每一步,可得出输出结果.【题目详解】,不成立,;不成立,;不成立,;成立,输出的值为.故选:B.【答案点睛】本题考查利用程序框图计算输出结果,一般要将算法的每一步列举出来,考查计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】根据所给表达式,结合奇函数性质,即可确定函数对称轴及周期性,进而由的解析式求得的值.【题目详解】满足,由函数对称性可知关于对称,且令,代入可得,由奇函数性质可知,所以令,代入可得,所以是以4为周期的周期函数,则当时,所以,所以,故答案为:.【答案

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 考试真题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2