收藏 分享(赏)

2023届上海市杨思中学高三二诊模拟考试数学试卷(含解析).doc

上传人:g****t 文档编号:13384 上传时间:2023-01-06 格式:DOC 页数:19 大小:1.83MB
下载 相关 举报
2023届上海市杨思中学高三二诊模拟考试数学试卷(含解析).doc_第1页
第1页 / 共19页
2023届上海市杨思中学高三二诊模拟考试数学试卷(含解析).doc_第2页
第2页 / 共19页
2023届上海市杨思中学高三二诊模拟考试数学试卷(含解析).doc_第3页
第3页 / 共19页
2023届上海市杨思中学高三二诊模拟考试数学试卷(含解析).doc_第4页
第4页 / 共19页
2023届上海市杨思中学高三二诊模拟考试数学试卷(含解析).doc_第5页
第5页 / 共19页
2023届上海市杨思中学高三二诊模拟考试数学试卷(含解析).doc_第6页
第6页 / 共19页
亲,该文档总共19页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求

2、的。1已知为锐角,且,则等于( )ABCD2已知双曲线的焦距为,若的渐近线上存在点,使得经过点所作的圆的两条切线互相垂直,则双曲线的离心率的取值范围是( )ABCD3把满足条件(1),(2),使得的函数称为“D函数”,下列函数是“D函数”的个数为( ) A1个B2个C3个D4个4某市政府决定派遣名干部(男女)分成两个小组,到该市甲、乙两个县去检查扶贫工作,若要求每组至少人,且女干部不能单独成组,则不同的派遣方案共有( )种ABCD5已知向量,且与的夹角为,则x=( )A-2B2C1D-16执行下面的程序框图,如果输入,则计算机输出的数是( )ABCD7已知函数在上可导且恒成立,则下列不等式中一

3、定成立的是( )A、B、C、D、8阅读如图所示的程序框图,运行相应的程序,则输出的结果为( )AB6CD9若集合,则( )ABCD10设正项等比数列的前n项和为,若,则公比( )AB4CD211设曲线在点处的切线方程为,则( )A1B2C3D412已知实数,满足,则的最大值等于( )A2BC4D8二、填空题:本题共4小题,每小题5分,共20分。13如图,为测量出高,选择和另一座山的山顶为测量观测点,从点测得点的仰角,点的仰角以及;从点测得已知山高,则山高_14从一箱产品中随机地抽取一件,设事件抽到一等品,事件抽到二等品,事件抽到三等品,且已知, ,则事件“抽到的产品不是一等品”的概率为_15已

4、知函数图象上一点处的切线方程为,则_16已知,求_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,其中.(1)当时,求在的切线方程;(2)求证:的极大值恒大于0.18(12分)已知函数.(1)若是函数的极值点,求的单调区间;(2)当时,证明:19(12分)如图,在棱长为的正方形中,分别为,边上的中点,现以为折痕将点旋转至点的位置,使得为直二面角(1)证明:;(2)求与面所成角的正弦值20(12分)如图,在四棱锥中,平面平面,.()求证:平面;()若锐二面角的余弦值为,求直线与平面所成的角.21(12分)已知函数.(1)讨论的零点个数;(2)证明:当时,.

5、22(10分)已知数列an的各项均为正,Sn为数列an的前n项和,an2+2an4Sn+1(1)求an的通项公式;(2)设bn,求数列bn的前n项和2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】由可得,再利用计算即可.【题目详解】因为,所以,所以.故选:C.【答案点睛】本题考查二倍角公式的应用,考查学生对三角函数式化简求值公式的灵活运用的能力,属于基础题.2、B【答案解析】由可得;由过点所作的圆的两条切线互相垂直可得,又焦点到双曲线渐近线的距离为,则,进而求解.【题目详解】,所

6、以离心率,又圆是以为圆心,半径的圆,要使得经过点所作的圆的两条切线互相垂直,必有,而焦点到双曲线渐近线的距离为,所以,即,所以,所以双曲线的离心率的取值范围是.故选:B【答案点睛】本题考查双曲线的离心率的范围,考查双曲线的性质的应用.3、B【答案解析】满足(1)(2)的函数是偶函数且值域关于原点对称,分别对所给函数进行验证.【题目详解】满足(1)(2)的函数是偶函数且值域关于原点对称,不满足(2);不满足(1);不满足(2);均满足(1)(2).故选:B.【答案点睛】本题考查新定义函数的问题,涉及到函数的性质,考查学生逻辑推理与分析能力,是一道容易题.4、C【答案解析】在所有两组至少都是人的分

7、组中减去名女干部单独成一组的情况,再将这两组分配,利用分步乘法计数原理可得出结果.【题目详解】两组至少都是人,则分组中两组的人数分别为、或、,又因为名女干部不能单独成一组,则不同的派遣方案种数为.故选:C.【答案点睛】本题考查排列组合的综合问题,涉及分组分配问题,考查计算能力,属于中等题.5、B【答案解析】由题意,代入解方程即可得解.【题目详解】由题意,所以,且,解得.故选:B.【答案点睛】本题考查了利用向量的数量积求向量的夹角,属于基础题.6、B【答案解析】先明确该程序框图的功能是计算两个数的最大公约数,再利用辗转相除法计算即可.【题目详解】本程序框图的功能是计算,中的最大公约数,所以,故当

8、输入,则计算机输出的数是57.故选:B.【答案点睛】本题考查程序框图的功能,做此类题一定要注意明确程序框图的功能是什么,本题是一道基础题.7、A【答案解析】设,利用导数和题设条件,得到,得出函数在R上单调递增,得到,进而变形即可求解.【题目详解】由题意,设,则,又由,所以,即函数在R上单调递增,则,即,变形可得.故选:A.【答案点睛】本题主要考查了利用导数研究函数的单调性及其应用,以及利用单调性比较大小,其中解答中根据题意合理构造新函数,利用新函数的单调性求解是解答的关键,着重考查了构造思想,以及推理与计算能力,属于中档试题.8、D【答案解析】用列举法,通过循环过程直接得出与的值,得到时退出循

9、环,即可求得.【题目详解】执行程序框图,可得,满足条件,满足条件,满足条件,由题意,此时应该不满足条件,退出循环,输出S的值为.故选D【答案点睛】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的与的值是解题的关键,难度较易.9、B【答案解析】根据正弦函数的性质可得集合A,由集合性质表示形式即可求得,进而可知满足.【题目详解】依题意,;而,故,则.故选:B.【答案点睛】本题考查了集合关系的判断与应用,集合的包含关系与补集关系的应用,属于中档题.10、D【答案解析】由得,又,两式相除即可解出【题目详解】解:由得,又,或,又正项等比数列得,故选:D【答案点睛】本题主要考查等比数列的

10、性质的应用,属于基础题11、D【答案解析】利用导数的几何意义得直线的斜率,列出a的方程即可求解【题目详解】因为,且在点处的切线的斜率为3,所以,即.故选:D【答案点睛】本题考查导数的几何意义,考查运算求解能力,是基础题12、D【答案解析】画出可行域,计算出原点到可行域上的点的最大距离,由此求得的最大值.【题目详解】画出可行域如下图所示,其中,由于,,所以,所以原点到可行域上的点的最大距离为.所以的最大值为.故选:D【答案点睛】本小题主要考查根据可行域求非线性目标函数的最值,考查数形结合的数学思想方法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【答案解析】试题分析:在中

11、,,,在中,由正弦定理可得即解得,在中,故答案为1考点:正弦定理的应用14、0.35【答案解析】根据对立事件的概率和为1,结合题意,即可求出结果来【题目详解】解:由题意知本题是一个对立事件的概率,抽到的不是一等品的对立事件是抽到一等品,抽到不是一等品的概率是,故答案为:【答案点睛】本题考查了求互斥事件与对立事件的概率的应用问题,属于基础题15、1【答案解析】求出导函数,由切线方程得切线斜率和切点坐标,从而可求得【题目详解】由题意,函数图象在点处的切线方程为,解得,故答案为:1【答案点睛】本题考查导数的几何意义,求出导函数是解题基础,16、【答案解析】求出向量的坐标,然后利用向量数量积的坐标运算

12、可计算出结果.【题目详解】,因此,.故答案为:.【答案点睛】本题考查平面向量数量积的坐标运算,考查计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【答案解析】(1)求导,代入,求出在处的导数值及函数值,由此即可求得切线方程;(2)分类讨论得出极大值即可判断.【题目详解】(1),当时,则在的切线方程为;(2)证明:令,解得或,当时,恒成立,此时函数在上单调递减,函数无极值;当时,令,解得,令,解得或,函数在上单调递增,在,上单调递减,;当时,令,解得,令,解得或,函数在上单调递增,在,上单调递减,综上,函数的极大值恒大于0.【答案点

13、睛】本小题主要考查利用导数求切线方程,考查利用导数研究函数的极值,考查分类讨论的数学思想方法,属于中档题.18、(1)递减区间为(-1,0),递增区间为(2)见解析【答案解析】(1)根据函数解析式,先求得导函数,由是函数的极值点可求得参数.求得函数定义域,并根据导函数的符号即可判断单调区间.(2)当时,.代入函数解析式放缩为,代入证明的不等式可化为,构造函数,并求得,由函数单调性及零点存在定理可知存在唯一的,使得成立,因而求得函数的最小值,由对数式变形化简可证明,即成立,原不等式得证.【题目详解】(1)函数可求得,则解得所以,定义域为,在单调递增,而,当时,单调递减,当时,单调递增,此时是函数的极小值点,的递减区间为,递增区间为(2)证明:当时,因此要证当时,只需证明,即令,则,在是单调递增,而,存在唯一的,使得,当,单调递减,当,单调递增,因此当时,函数取得最小值,故,从而,即,结论成立.【答案点睛】本题考查了由函数极值求参数,并根据导数判断函数的单调区间,利用导数证明不等式恒成立,构造函数法的综合应用,属于难题.19、(1)证明见详解;(2)【答案解析】(1)在折叠前的正方形ABCD中,作出对角线AC,BD,由正方形性质知,又/,则于点H,则由直二面角可知面 ,故.又,则面,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 考试真题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2