1、2023学年高考数学模拟测试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,若对,且,使得,则实数的取值范围是( )ABCD2若等差数列的前项和为,且,则的值为( )A21B63C13D843已知a0,b0,a+b =1,若 =,则的最小值是( )A3B4C5D64已知焦点为的抛物线的准线与轴交于点,点在
2、抛物线上,则当取得最大值时,直线的方程为( )A或B或C或D5总体由编号01,,02,19,20的20个个体组成利用下面的随机数表选取5个个体,选取方法是随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为7816657208026314070243699728019832049234493582003623486969387481A08B07C02D016若执行如图所示的程序框图,则输出的值是( )ABCD47已知集合,则( )ABCD8某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)为( )AB6CD9已知类产品共两件,类产品共三件,混
3、放在一起,现需要通过检测将其区分开来,每次随机检测一件产品,检测后不放回,直到检测出2件类产品或者检测出3件类产品时,检测结束,则第一次检测出类产品,第二次检测出类产品的概率为( )ABCD10若复数满足,则( )ABC2D11若函数满足,且,则的最小值是( )ABCD12函数的部分图象大致是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13 (xy)(2xy)5的展开式中x3y3的系数为_.14在中,角,所对的边分别边,且,设角的角平分线交于点,则的值最小时,_.15圆关于直线的对称圆的方程为_.16函数在的零点个数为_.三、解答题:共70分。解答应写出文字说明、证明过程或演
4、算步骤。17(12分)已知x,y,z均为正数(1)若xy1,证明:|x+z|y+z|4xyz;(2)若,求2xy2yz2xz的最小值18(12分)已知抛物线的焦点为,直线交于两点(异于坐标原点O).(1)若直线过点,,求的方程;(2)当时,判断直线是否过定点,若过定点,求出定点坐标;若不过定点,说明理由.19(12分)已知数列中,前项和为,若对任意的,均有(是常数,且)成立,则称数列为“数列”.(1)若数列为“数列”,求数列的前项和;(2)若数列为“数列”,且为整数,试问:是否存在数列,使得对任意,成立?如果存在,求出这样数列的的所有可能值,如果不存在,请说明理由.20(12分)已知是公比为的
5、无穷等比数列,其前项和为,满足,_是否存在正整数,使得?若存在,求的最小值;若不存在,说明理由从,这三个条件中任选一个,补充在上面问题中并作答21(12分)已知函数有两个极值点,.(1)求实数的取值范围;(2)证明:.22(10分)在等比数列中,已知,.设数列的前n项和为,且,(,).(1)求数列的通项公式;(2)证明:数列是等差数列;(3)是否存在等差数列,使得对任意,都有?若存在,求出所有符合题意的等差数列;若不存在,请说明理由.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析
6、】先求出的值域,再利用导数讨论函数在区间上的单调性,结合函数值域,由方程有两个根求参数范围即可.【题目详解】因为,故,当时,故在区间上单调递减;当时,故在区间上单调递增;当时,令,解得,故在区间单调递减,在区间上单调递增.又,且当趋近于零时,趋近于正无穷;对函数,当时,;根据题意,对,且,使得成立,只需,即可得,解得.故选:D.【答案点睛】本题考查利用导数研究由方程根的个数求参数范围的问题,涉及利用导数研究函数单调性以及函数值域的问题,属综合困难题.2、B【答案解析】由已知结合等差数列的通项公式及求和公式可求,然后结合等差数列的求和公式即可求解【题目详解】解:因为,所以,解可得,则故选:B【答
7、案点睛】本题主要考查等差数列的通项公式及求和公式的简单应用,属于基础题3、C【答案解析】根据题意,将a、b代入,利用基本不等式求出最小值即可.【题目详解】a0,b0,a+b=1,当且仅当时取“”号答案:C【答案点睛】本题考查基本不等式的应用,“1”的应用,利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是首先要判断参数是否为正;二定是其次要看和或积是否为定值(和定积最大,积定和最小);三相等是最后一定要验证等号能否成立,属于基础题.4、A【答案解析】过作与准线垂直,垂足为,利用抛物线的定义可得,要使最大,则应最大,此时与抛物线相切,再用判别式或导数计算即可.【题目
8、详解】过作与准线垂直,垂足为,则当取得最大值时,最大,此时与抛物线相切,易知此时直线的斜率存在,设切线方程为,则.则,则直线的方程为.故选:A.【答案点睛】本题考查直线与抛物线的位置关系,涉及到抛物线的定义,考查学生转化与化归的思想,是一道中档题.5、D【答案解析】从第一行的第5列和第6列起由左向右读数划去大于20的数分别为:08,02,14,07,01,所以第5个个体是01,选D.考点:此题主要考查抽样方法的概念、抽样方法中随机数表法,考查学习能力和运用能力.6、D【答案解析】模拟程序运行,观察变量值的变化,得出的变化以4为周期出现,由此可得结论【题目详解】;如此循环下去,当时,此时不满足,
9、循环结束,输出的值是4.故选:D【答案点睛】本题考查程序框图,考查循环结构解题时模拟程序运行,观察变量值的变化,确定程序功能,可得结论7、B【答案解析】计算,再计算交集得到答案【题目详解】,表示偶数,故.故选:.【答案点睛】本题考查了集合的交集,意在考查学生的计算能力.8、D【答案解析】根据几何体的三视图,该几何体是由正方体去掉三棱锥得到,根据正方体和三棱锥的体积公式可求解.【题目详解】如图,该几何体为正方体去掉三棱锥,所以该几何体的体积为:,故选:D【答案点睛】本题主要考查了空间几何体的三视图以及体积的求法,考查了空间想象力,属于中档题.9、D【答案解析】根据分步计数原理,由古典概型概率公式
10、可得第一次检测出类产品的概率,不放回情况下第二次检测出类产品的概率,即可得解.【题目详解】类产品共两件,类产品共三件,则第一次检测出类产品的概率为;不放回情况下,剩余4件产品,则第二次检测出类产品的概率为;故第一次检测出类产品,第二次检测出类产品的概率为;故选:D.【答案点睛】本题考查了分步乘法计数原理的应用,古典概型概率计算公式的应用,属于基础题.10、D【答案解析】把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式计算.【题目详解】解:由题意知,故选:D.【答案点睛】本题考查复数代数形式的乘除运算,考查复数模的求法.11、A【答案解析】由推导出,且,将所求代数式变形为,利
11、用基本不等式求得的取值范围,再利用函数的单调性可得出其最小值.【题目详解】函数满足,即,即,则,由基本不等式得,当且仅当时,等号成立.,由于函数在区间上为增函数,所以,当时,取得最小值.故选:A.【答案点睛】本题考查代数式最值的计算,涉及对数运算性质、基本不等式以及函数单调性的应用,考查计算能力,属于中等题.12、C【答案解析】判断函数的性质,和特殊值的正负,以及值域,逐一排除选项.【题目详解】,函数是奇函数,排除,时,时,排除,当时, 时,排除,符合条件,故选C.【答案点睛】本题考查了根据函数解析式判断函数图象,属于基础题型,一般根据选项判断函数的奇偶性,零点,特殊值的正负,以及单调性,极值
12、点等排除选项.二、填空题:本题共4小题,每小题5分,共20分。13、40【答案解析】先求出的展开式的通项,再求出即得解.【题目详解】设的展开式的通项为,令r=3,则,令r=2,则,所以展开式中含x3y3的项为.所以x3y3的系数为40.故答案为:40【答案点睛】本题主要考查二项式定理求指定项的系数,意在考查学生对这些知识的理解掌握水平.14、【答案解析】根据题意,利用余弦定理和基本不等式得出,再利用正弦定理,即可得出.【题目详解】因为,则,由余弦定理得:,当且仅当时取等号,又因为,所以.故答案为:.【答案点睛】本题考查余弦定理和正弦定理的应用,以及基本不等式求最值,考查计算能力.15、【答案解
13、析】求出圆心关于直线的对称点,即可得解.【题目详解】的圆心为,关于对称点设为,则有: ,解得,所以对称后的圆心为,故所求圆的方程为.故答案为:【答案点睛】此题考查求圆关于直线的对称圆方程,关键在于准确求出圆心关于直线的对称点坐标.16、1【答案解析】本问题转化为曲线交点个数问题,在同一直角坐标系内,画出函数的图象,利用数形结合思想进行求解即可.【题目详解】问题函数在的零点个数,可以转化为曲线交点个数问题.在同一直角坐标系内,画出函数的图象,如下图所示:由图象可知:当时,两个函数只有一个交点.故答案为:1【答案点睛】本题考查了求函数的零点个数问题,考查了转化思想和数形结合思想.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)最小值为1【答案解析】(1)利用基本不等式可得 , 再根据0xy1时, 即可证明|x+z|y+z|4xyz.(2)由, 得,然后利用基本不等式即可得到xy+yz+xz3,从而求出2xy2yz2xz的最小值.【题目详解】(1)证明:x,y,z均为正数,|x+z|y+z|(x+z)(y+z),当且仅当xyz时取等号又0xy1,|x+z|y+z|4xyz;(2),即,当且仅当xyz1时取等号,xy+yz+xz3,2xy2yz2xz2xy+y