1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并
2、交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,则 ()ABCD2已知函数满足,且,则不等式的解集为( )ABCD3已知数列中,且当为奇数时,;当为偶数时,则此数列的前项的和为( )ABCD4已知定义在上的函数满足,且当时,.设在上的最大值为(),且数列的前项的和为.若对于任意正整数不等式恒成立,则实数的取值范围为( )ABCD5已知复数满足:(为虚数单位),则( )ABCD6在中,内角A,B,C所对的边分别为a,b,c,且.若,的面积为,则( )A5BC4D167如图,某几何体的三视图是由三个边长为2的正方形和其内部的一些虚
3、线构成的,则该几何体的体积为( )ABC6D与点O的位置有关8已知倾斜角为的直线与直线垂直,则( )ABCD9如图,圆的半径为,是圆上的定点,是圆上的动点, 点关于直线的对称点为,角的始边为射线,终边为射线,将表示为的函数,则在上的图像大致为( )ABCD10已知,椭圆的方程,双曲线的方程为,和的离心率之积为,则的渐近线方程为( )ABCD11已知,若,则实数的值是()A-1B7C1D1或712关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,某同学通过下面的随机模拟方法来估计的值:先用计算机产生个数对,其中,都是区间上的均匀随机数,再统计,能与构成锐角
4、三角形三边长的数对的个数最后根据统计数来估计的值.若,则的估计值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知集合,则_.14某种牛肉干每袋的质量服从正态分布,质检部门的检测数据显示:该正态分布为,.某旅游团游客共购买这种牛肉干100袋,估计其中质量低于的袋数大约是_袋.15李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元每笔订单顾客网上支付成功后,李明会得到支付款的80%当x=10时,顾客一次购买草莓和
5、西瓜各1盒,需要支付_元;在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为_16在区间内任意取一个数,则恰好为非负数的概率是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)解不等式;(2)记函数的最大值为,若,证明:.18(12分)已知函数.(1)讨论函数f(x)的极值点的个数;(2)若f(x)有两个极值点证明.19(12分)已知多面体中,、均垂直于平面,是的中点(1)求证:平面;(2)求直线与平面所成角的正弦值20(12分)在平面直角坐标系中,已知直线(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系
6、,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)设点的极坐标为,直线与曲线的交点为,求的值.21(12分)某工厂,两条相互独立的生产线生产同款产品,在产量一样的情况下通过日常监控得知,生产线生产的产品为合格品的概率分别为和.(1)从,生产线上各抽检一件产品,若使得至少有一件合格的概率不低于,求的最小值.(2)假设不合格的产品均可进行返工修复为合格品,以(1)中确定的作为的值.已知,生产线的不合格产品返工后每件产品可分别挽回损失元和元若从两条生产线上各随机抽检件产品,以挽回损失的平均数为判断依据,估计哪条生产线挽回的损失较多?若最终的合格品(包括返工修复后的合格品)按照一、二、三等级分类
7、后,每件分别获利元、元、元,现从,生产线的最终合格品中各随机抽取件进行检测,结果统计如下图;用样本的频率分布估计总体分布,记该工厂生产一件产品的利润为,求的分布列并估算该厂产量件时利润的期望值.22(10分)已知函数,且曲线在处的切线方程为.(1)求的极值点与极值.(2)当,时,证明:.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】利用诱导公式以及同角三角函数基本关系式化简求解即可【题目详解】,本题正确选项:【答案点睛】本题考查诱导公式的应用,同角三角函数基本关系式的应用,考查
8、计算能力2、B【答案解析】构造函数,利用导数研究函数的单调性,即可得到结论.【题目详解】设,则函数的导数,,即函数为减函数,,则不等式等价为,则不等式的解集为,即的解为,由得或,解得或,故不等式的解集为.故选:.【答案点睛】本题主要考查利用导数研究函数单调性,根据函数的单调性解不等式,考查学生分析问题解决问题的能力,是难题.3、A【答案解析】根据分组求和法,利用等差数列的前项和公式求出前项的奇数项的和,利用等比数列的前项和公式求出前项的偶数项的和,进而可求解.【题目详解】当为奇数时,则数列奇数项是以为首项,以为公差的等差数列,当为偶数时,则数列中每个偶数项加是以为首项,以为公比的等比数列.所以
9、.故选:A【答案点睛】本题考查了数列分组求和、等差数列的前项和公式、等比数列的前项和公式,需熟记公式,属于基础题.4、C【答案解析】由已知先求出,即,进一步可得,再将所求问题转化为对于任意正整数恒成立,设,只需找到数列的最大值即可.【题目详解】当时,则,所以,显然当时,故,若对于任意正整数不等式恒成立,即对于任意正整数恒成立,即对于任意正整数恒成立,设,令,解得,令,解得,考虑到,故有当时,单调递增,当时,有单调递减,故数列的最大值为,所以.故选:C.【答案点睛】本题考查数列中的不等式恒成立问题,涉及到求函数解析、等比数列前n项和、数列单调性的判断等知识,是一道较为综合的数列题.5、A【答案解
10、析】利用复数的乘法、除法运算求出,再根据共轭复数的概念即可求解.【题目详解】由,则,所以.故选:A【答案点睛】本题考查了复数的四则运算、共轭复数的概念,属于基础题.6、C【答案解析】根据正弦定理边化角以及三角函数公式可得,再根据面积公式可求得,再代入余弦定理求解即可.【题目详解】中,由正弦定理得,又,又,又,.,由余弦定理可得,可得.故选:C【答案点睛】本题主要考查了解三角形中正余弦定理与面积公式的运用,属于中档题.7、B【答案解析】根据三视图还原直观图如下图所示,几何体的体积为正方体的体积减去四棱锥的体积,即可求出结论.【题目详解】如下图是还原后的几何体,是由棱长为2的正方体挖去一个四棱锥构
11、成的,正方体的体积为8,四棱锥的底面是边长为2的正方形,顶点O在平面上,高为2,所以四棱锥的体积为,所以该几何体的体积为.故选:B.【答案点睛】本题考查三视图求几何体的体积,还原几何体的直观图是解题的关键,属于基础题.8、D【答案解析】倾斜角为的直线与直线垂直,利用相互垂直的直线斜率之间的关系,同角三角函数基本关系式即可得出结果.【题目详解】解:因为直线与直线垂直,所以,.又为直线倾斜角,解得.故选:D.【答案点睛】本题考查了相互垂直的直线斜率之间的关系,同角三角函数基本关系式,考查计算能力,属于基础题.9、B【答案解析】根据图象分析变化过程中在关键位置及部分区域,即可排除错误选项,得到函数图
12、象,即可求解.【题目详解】由题意,当时,P与A重合,则与B重合,所以,故排除C,D选项;当时,由图象可知选B.故选:B【答案点睛】本题主要考查三角函数的图像与性质,正确表示函数的表达式是解题的关键,属于中档题.10、A【答案解析】根据椭圆与双曲线离心率的表示形式,结合和的离心率之积为,即可得的关系,进而得双曲线的离心率方程.【题目详解】椭圆的方程,双曲线的方程为,则椭圆离心率,双曲线的离心率,由和的离心率之积为,即,解得,所以渐近线方程为,化简可得,故选:A.【答案点睛】本题考查了椭圆与双曲线简单几何性质应用,椭圆与双曲线离心率表示形式,双曲线渐近线方程求法,属于基础题.11、C【答案解析】根
13、据平面向量数量积的坐标运算,化简即可求得的值.【题目详解】由平面向量数量积的坐标运算,代入化简可得.解得.故选:C.【答案点睛】本题考查了平面向量数量积的坐标运算,属于基础题.12、B【答案解析】先利用几何概型的概率计算公式算出,能与构成锐角三角形三边长的概率,然后再利用随机模拟方法得到,能与构成锐角三角形三边长的概率,二者概率相等即可估计出.【题目详解】因为,都是区间上的均匀随机数,所以有,若,能与构成锐角三角形三边长,则,由几何概型的概率计算公式知,所以.故选:B.【答案点睛】本题考查几何概型的概率计算公式及运用随机数模拟法估计概率,考查学生的基本计算能力,是一个中档题.二、填空题:本题共
14、4小题,每小题5分,共20分。13、【答案解析】根据并集的定义计算即可.【题目详解】由集合的并集,知.故答案为:【答案点睛】本题考查集合的并集运算,属于容易题.14、1【答案解析】根据正态分布对称性,求得质量低于的袋数的估计值.【题目详解】由于,所以,所以袋牛肉干中,质量低于的袋数大约是袋.故答案为:【答案点睛】本小题主要考查正态分布对称性的应用,属于基础题.15、130. 15. 【答案解析】由题意可得顾客需要支付的费用,然后分类讨论,将原问题转化为不等式恒成立的问题可得的最大值.【题目详解】(1),顾客一次购买草莓和西瓜各一盒,需要支付元.(2)设顾客一次购买水果的促销前总价为元,元时,李明得到的金额为,符合要求.元时,有恒成立,即,即元.所以的最大值为.【答案点睛】本题主要考查不等式的概念与性质数学的应用意识数学式子变形与运算求解能力,以实际生活为背景,创设问题情境,考查学生身边的数学,考