收藏 分享(赏)

2023届吉林省长春市十一高中、白城一中联考高三第一次调研测试数学试卷(含解析).doc

上传人:la****1 文档编号:13478 上传时间:2023-01-06 格式:DOC 页数:21 大小:2.62MB
下载 相关 举报
2023届吉林省长春市十一高中、白城一中联考高三第一次调研测试数学试卷(含解析).doc_第1页
第1页 / 共21页
2023届吉林省长春市十一高中、白城一中联考高三第一次调研测试数学试卷(含解析).doc_第2页
第2页 / 共21页
2023届吉林省长春市十一高中、白城一中联考高三第一次调研测试数学试卷(含解析).doc_第3页
第3页 / 共21页
2023届吉林省长春市十一高中、白城一中联考高三第一次调研测试数学试卷(含解析).doc_第4页
第4页 / 共21页
2023届吉林省长春市十一高中、白城一中联考高三第一次调研测试数学试卷(含解析).doc_第5页
第5页 / 共21页
2023届吉林省长春市十一高中、白城一中联考高三第一次调研测试数学试卷(含解析).doc_第6页
第6页 / 共21页
亲,该文档总共21页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1复数的共轭复数对应的点位于( )A第一象限B第二象限C第三象限D第四象限2已知向量,夹角为, ,则( )A2B4CD3已知函数(,),将函数的图象向左平移个单位长度,得到函数的

2、部分图象如图所示,则是的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件4记为等差数列的前项和.若,则( )A5B3C12D135已知平面向量,满足且,若对每一个确定的向量,记的最小值为,则当变化时,的最大值为( )ABCD16连接双曲线及的4个顶点的四边形面积为,连接4个焦点的四边形的面积为,则当取得最大值时,双曲线的离心率为( )ABCD7已知随机变量服从正态分布,且,则( )ABCD8已知双曲线的渐近线方程为,且其右焦点为,则双曲线的方程为( )ABCD9等比数列的各项均为正数,且,则( )A12B10C8D10已知向量与的夹角为,定义为与的“向量积”,且是一个向量

3、,它的长度,若,则( )ABC6D11已知集合,则集合的非空子集个数是( )A2B3C7D812是定义在上的增函数,且满足:的导函数存在,且,则下列不等式成立的是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知函数为奇函数,则_.14函数的单调增区间为_.15若正实数,满足,则的最大值是_16已知函数f(x)若关于x的方程f(x)kx有两个不同的实根,则实数k的取值范围是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分) 已知函数,()当时,求曲线在处的切线方程; ()求函数在上的最小值;()若函数,当时,的最大值为,求证:.18(12分)设,

4、函数,其中为自然对数的底数.(1)设函数.若,试判断函数与的图像在区间上是否有交点;求证:对任意的,直线都不是的切线;(2)设函数,试判断函数是否存在极小值,若存在,求出的取值范围;若不存在,请说明理由.19(12分)已知动圆E与圆外切,并与直线相切,记动圆圆心E的轨迹为曲线C.(1)求曲线C的方程;(2)过点的直线l交曲线C于A,B两点,若曲线C上存在点P使得,求直线l的斜率k的取值范围.20(12分)已知椭圆的离心率为,且过点()求椭圆的方程;()设是椭圆上且不在轴上的一个动点,为坐标原点,过右焦点作的平行线交椭圆于、两个不同的点,求的值21(12分)如图1,在等腰梯形中,两腰,底边,是的

5、三等分点,是的中点.分别沿,将四边形和折起,使,重合于点,得到如图2所示的几何体.在图2中,分别为,的中点.(1)证明:平面.(2)求直线与平面所成角的正弦值.22(10分)在平面直角坐标系中,点是直线上的动点,为定点,点为的中点,动点满足,且,设点的轨迹为曲线.(1)求曲线的方程;(2)过点的直线交曲线于,两点,为曲线上异于,的任意一点,直线,分别交直线于,两点.问是否为定值?若是,求的值;若不是,请说明理由.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】试题分析:由题意可得

6、:. 共轭复数为,故选A.考点:1.复数的除法运算;2.以及复平面上的点与复数的关系2、A【答案解析】根据模长计算公式和数量积运算,即可容易求得结果.【题目详解】由于,故选:A.【答案点睛】本题考查向量的数量积运算,模长的求解,属综合基础题.3、B【答案解析】先根据图象求出函数的解析式,再由平移知识得到的解析式,然后分别找出和的等价条件,即可根据充分条件,必要条件的定义求出.【题目详解】设,根据图象可知,再由, 取,.将函数的图象向右平移个单位长度,得到函数的图象,.,令,则,显然,是的必要不充分条件.故选:B【答案点睛】本题主要考查利用图象求正(余)弦型函数的解析式,三角函数的图形变换, 二

7、倍角公式的应用,充分条件,必要条件的定义的应用,意在考查学生的数学运算能力和逻辑推理能力,属于中档题.4、B【答案解析】由题得,解得,计算可得.【题目详解】,解得,.故选:B【答案点睛】本题主要考查了等差数列的通项公式,前项和公式,考查了学生运算求解能力.5、B【答案解析】根据题意,建立平面直角坐标系.令.为中点.由即可求得点的轨迹方程.将变形,结合及平面向量基本定理可知三点共线.由圆切线的性质可知的最小值即为到直线的距离最小值,且当与圆相切时,有最大值.利用圆的切线性质及点到直线距离公式即可求得直线方程,进而求得原点到直线的距离,即为的最大值.【题目详解】根据题意,设,则由代入可得即点的轨迹

8、方程为又因为,变形可得,即,且所以由平面向量基本定理可知三点共线,如下图所示:所以的最小值即为到直线的距离最小值根据圆的切线性质可知,当与圆相切时,有最大值设切线的方程为,化简可得由切线性质及点到直线距离公式可得,化简可得 即 所以切线方程为或所以当变化时, 到直线的最大值为 即的最大值为故选:B【答案点睛】本题考查了平面向量的坐标应用,平面向量基本定理的应用, 圆的轨迹方程问题,圆的切线性质及点到直线距离公式的应用,综合性强,属于难题.6、D【答案解析】先求出四个顶点、四个焦点的坐标,四个顶点构成一个菱形,求出菱形的面积,四个焦点构成正方形,求出其面积,利用重要不等式求得取得最大值时有,从而

9、求得其离心率.【题目详解】双曲线与互为共轭双曲线,四个顶点的坐标为,四个焦点的坐标为,四个顶点形成的四边形的面积,四个焦点连线形成的四边形的面积,所以,当取得最大值时有,离心率,故选:D.【答案点睛】该题考查的是有关双曲线的离心率的问题,涉及到的知识点有共轭双曲线的顶点,焦点,菱形面积公式,重要不等式求最值,等轴双曲线的离心率,属于简单题目.7、C【答案解析】根据在关于对称的区间上概率相等的性质求解【题目详解】,故选:C【答案点睛】本题考查正态分布的应用掌握正态曲线的性质是解题基础随机变量服从正态分布,则8、B【答案解析】试题分析:由题意得,所以,所求双曲线方程为考点:双曲线方程.9、B【答案

10、解析】由等比数列的性质求得,再由对数运算法则可得结论【题目详解】数列是等比数列,故选:B.【答案点睛】本题考查等比数列的性质,考查对数的运算法则,掌握等比数列的性质是解题关键10、D【答案解析】先根据向量坐标运算求出和,进而求出,代入题中给的定义即可求解.【题目详解】由题意,则,得,由定义知,故选:D.【答案点睛】此题考查向量的坐标运算,引入新定义,属于简单题目.11、C【答案解析】先确定集合中元素,可得非空子集个数【题目详解】由题意,共3个元素,其子集个数为,非空子集有7个故选:C【答案点睛】本题考查集合的概念,考查子集的概念,含有个元素的集合其子集个数为,非空子集有个12、D【答案解析】根

11、据是定义在上的增函数及有意义可得,构建新函数,利用导数可得为上的增函数,从而可得正确的选项.【题目详解】因为是定义在上的增函数,故.又有意义,故,故,所以.令,则,故在上为增函数,所以即,整理得到.故选:D.【答案点睛】本题考查导数在函数单调性中的应用,一般地,数的大小比较,可根据数的特点和题设中给出的原函数与导数的关系构建新函数,本题属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】利用奇函数的定义得出,结合对数的运算性质可求得实数的值.【题目详解】由于函数为奇函数,则,即,整理得,解得.当时,真数,不合乎题意;当时,解不等式,解得或,此时函数的定义域为,定义域关

12、于原点对称,合乎题意.综上所述,.故答案为:.【答案点睛】本题考查利用函数的奇偶性求参数,考查了函数奇偶性的定义和对数运算性质的应用,考查计算能力,属于中等题.14、【答案解析】先求出导数,再在定义域上考虑导数的符号为正时对应的的集合,从而可得函数的单调增区间.【题目详解】函数的定义域为.,令,则,故函数的单调增区间为:.故答案为:.【答案点睛】本题考查导数在函数单调性中的应用,注意先考虑函数的定义域,再考虑导数在定义域上的符号,本题属于基础题.15、【答案解析】分析:将题中的式子进行整理,将当做一个整体,之后应用已知两个正数的整式形式和为定值,求分式形式和的最值的问题的求解方法,即可求得结果

13、.详解:,当且仅当等号成立,故答案是.点睛:该题属于应用基本不等式求最值的问题,解决该题的关键是需要对式子进行化简,转化,利用整体思维,最后注意此类问题的求解方法-相乘,即可得结果.16、【答案解析】由图可知,当直线ykx在直线OA与x轴(不含它们)之间时,ykx与yf(x)的图像有两个不同交点,即方程有两个不相同的实根三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、()()见解析;()见解析.【答案解析】试题分析:()由题,所以故,代入点斜式可得曲线在处的切线方程;()由题(1)当时,在上单调递增. 则函数在上的最小值是(2)当时,令,即,令,即(i)当,即时,在上单调递

14、增,所以在上的最小值是(ii)当,即时,由的单调性可得在上的最小值是(iii)当,即时,在上单调递减,在上的最小值是()当时,令,则是单调递减函数. 因为,所以在上存在,使得,即讨论可得在上单调递增,在上单调递减. 所以当时,取得最大值是因为,所以由此可证试题解析:()因为函数,且, 所以,所以所以,所以曲线在处的切线方程是,即()因为函数,所以(1)当时,所以在上单调递增. 所以函数在上的最小值是(2)当时,令,即,所以令,即,所以(i)当,即时,在上单调递增,所以在上的最小值是(ii)当,即时,在上单调递减,在上单调递增,所以在上的最小值是(iii)当,即时,在上单调递减,所以在上的最小值是综上所述,当时,在上的最小值是当时,在上的最小值是当时,在上的最

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 考试真题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2