收藏 分享(赏)

2023年高三一轮复习讲座六不等式高中数学.docx

上传人:la****1 文档编号:1359313 上传时间:2023-04-20 格式:DOCX 页数:9 大小:122.42KB
下载 相关 举报
2023年高三一轮复习讲座六不等式高中数学.docx_第1页
第1页 / 共9页
2023年高三一轮复习讲座六不等式高中数学.docx_第2页
第2页 / 共9页
2023年高三一轮复习讲座六不等式高中数学.docx_第3页
第3页 / 共9页
2023年高三一轮复习讲座六不等式高中数学.docx_第4页
第4页 / 共9页
2023年高三一轮复习讲座六不等式高中数学.docx_第5页
第5页 / 共9页
2023年高三一轮复习讲座六不等式高中数学.docx_第6页
第6页 / 共9页
亲,该文档总共9页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023年高三一轮复习讲座六 -不等式主讲教师:王思俭 苏州中学二、复习要求1、 不等式的概念及性质; 2、不等式的证明; 3、不等式的解法;4、不等式的应用。三、学习指导1、 不等式的性质是证明不等式和解不等式的根底。不等式的根本性质有:(1) 对称性或反身性:abbb,bc,那么ac;(3) 可加性:aba+cb+c,此法那么又称为移项法那么;(4) 可乘性:ab,当c0时,acbc;当c0时,acb,cd,那么a+cb+d;(2) 正数同向相乘:假设ab0,cd0,那么acbd。 特例:3乘方法那么:假设ab0,nN+,那么;4开方法那么:假设ab0,nN+,那么;(5) 倒数法那么:假

2、设ab0,ab,那么。掌握不等式的性质,应注意:(1) 条件与结论间的对应关系,如是“符号还是“符号;(2) 不等式性质的重点是不等号方向,条件与不等号方向是紧密相连的。 2、均值不等式;利用完全平方式的性质,可得a2+b22aba,bR,该不等式可推广为a2+b22|ab|;或变形为|ab|;当a,b0时,a+b或ab.在具体条件下选择适当的形式。3、不等式的证明:(1) 不等式证明的常用方法:比拟法,公式法,分析法,反证法,换元法,放缩法;(2) 在不等式证明过程中,应注重与不等式的运算性质联合使用;(3) 证明不等式的过程中,放大或缩小应适度。4、 不等式的解法:解不等式是寻找使不等式成

3、立的充要条件,因此在解不等式过程中应使每一步的变形都要恒等。一元二次不等式组是解不等式的根底,一元二次不等式是解不等式的基此题型。利用序轴标根法可以解分式及高次不等式。含参数的不等式应适当分类讨论。5、不等式的应用相当广泛,如求函数的定义域,值域,研究函数单调性等。在解决问题过程中,应当善于发现具体问题背景下的不等式模型。用根本不等式求分式函数及多元函数最值是求函数最值的初等数学方法之一。研究不等式结合函数思想,数形结合思想,等价变换思想等。四、典型例题例1、 f(x)=ax2-c,-4f(1)-1,-1f(2)5,试求f(3)的取值范围。分析:从条件和结论相互化归的角度看,用f(1),f(2

4、)的线性组合来表示f(3),再利用不等式的性质求解。设f(3)=mf(1)+nf(2) 9a-c=m(a-c)+n(4a-c) 9a-c=(m+4n)a-(m+n)c f(3)= -4f(1)-1,-1f(2)5 , -1f(3)20说明:1、此题也可以先用f(1),f(2)表示a,c,即a=f(2)-f(1),c=f(2)-4f(1),然后代入f(3),到达用f(1),f(2)表示f(3)的目的。 2、此题典型错误是从-4a-c-1,-14a-c5中解出a,c的范围,然后再用不等式的运算性质求f(3)=9a-c的范围。错误的原因是屡次运用不等式的运算性质时,不等式之间出现了不等价变形。2、

5、此题还可用线性规划知识求解。例2、 设a0,b0,求证:。分析:法一:比差法,当不等式是代数不等式时,常用比差法,比差法的三步骤即为函数单调性证明的步骤。左-右= 0 左右法二:根本不等式根据不等号的方向应自左向右进行缩小,为了出现右边的整式形式,用配方的技巧。 两式相加得:例3、 设实数x,y满足y+x2=0,0a1,求证:。分析: ,0a0,y0,a0 由0得y-b0 x+y当且仅当,即时,等号成立途径二:令,0, , x+y=当且仅当时,等号成立说明:此题从代数消元或三角换元两种途径起到了消元作用。例5、f(x)=-3x2+a(6-a)x+b(1) 解关于a的不等式f(1)0;(2) 当

6、不等式f(x)0的解集为-1,3时,求实数a,b的值。分析:(1) f(1)=-3+a(6-a)+b=-a2+6a+b-3 f(1)0 a2-6a+3-b0的解集为;当b-6时, f(1)0的解集为 2 不等式-3x2+a(6-a)x+b0的解集为-1,3 f(x)0与不等式(x+1)(x-3)0同解 3x2-a(6-a)x-b0解集为-1,3 解之得例6、设a,bR,关于x方程x2+ax+b=0的实根为,假设|a|+|b|1,求证:|1,|1-(|a|+|b|)1-1=0 f(-1)=1-a+b1-(|a|+|b|)0又 0|a|a|+|b|1 -1a1 f(x)=0的两根在-1,1内,即|

7、1,|1法二:+=-a,=b |+|+|=|+|1 |-|+|+|+|1|-1|+10 |1同理:|a时,设m=a+xx0,乘坐起步价为10元的出租车费用为P(x)元,乘坐起步价为8元的出租车费用为Q(x)元,那么P(x)=10+1.2x,Q(x)=8+1.4x P(x)-Q(x)=2-0.2x=0.2(10-x) 当x0时,P(x)Q(x),此时起步价为10元的出租车比拟适宜当xQ(x),此时选起步价为8元的出租车比拟适宜当x=10时,此时两种出租车任选同步练习(一) 选择题1、“a0且b0是“的A、充分而非必要条件 B、必要而非充要条件C、充要条件 D、既非充分又非必要条件2、设a0,那么

8、关于x的不等式42x2+ax-a20的解集为A、 B、 C、 D、3、 假设0a0,f(x)=,那么A、f(x)2 B、f(x)10 C、f(x)6 D、f(x)35、 ,a2,那么A、 pq B、pq C、pq D、pq6、 假设|a-c|h, |b-c|h,那么以下不等式一定成立的是A、 |a-b|2h C、|a-b|h7、 关于x的方程9x+(a+4)3x+4=0有解,那么实数a的取值范围是A、 -,-80,+ B、-,-4B、 -8,4 D、-,-88、 假设a0,b0,且2a+b=1,那么S=2-4a2-b2的最大值是A、 B、 C、 D、(二) 填空题9、 设a0,b0,a,b是常

9、数,那么当x0时,函数f(x)=的最小值是_。 10、周长为的直角三角形面积的最大值为_。 11、记S=,那么S与1的大小关系是_。12、不等式|x2-2x+3|3x-1|的解集为_。(三) 解答题13、要使不等式对所有正数x,y都成立,试问k的最小值是多少?14、解关于x的不等式15、a0,求证:16、不等式对nN+都成立,试求实数a的取值范围。17、假设a是正实数,2a2+3b2=10,求的最值。18、商店经销某商品,年销售量为D件,每件商品库存费用为I元,每批进货量为Q件,每次进货所需费用为S元,现假定商店在卖完该货物时立即进货,使库存量平均为件,问每批进货量Q为多大时,整个费用最省?参考答案(一) 选择题 1、A 2、A 3、B 4、C 5、A 6、A 7、D 8、A(二) 填空题 9、 10、 11、S1 12、1,4(三) 解答题 13、 14、当a-1时,x(-,a)(-1,2) 当-1a2时,x(-,-1)(2,a) 15、当|a|b|时,不等式显然成立 当|a|b|时, 左= =16、或17、,此时18、

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 资格与职业考试 > 其它

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2