收藏 分享(赏)

内蒙古乌兰察布市集宁区2023学年高三3月份模拟考试数学试题(含解析).doc

上传人:la****1 文档编号:13730 上传时间:2023-01-06 格式:DOC 页数:19 大小:1.93MB
下载 相关 举报
内蒙古乌兰察布市集宁区2023学年高三3月份模拟考试数学试题(含解析).doc_第1页
第1页 / 共19页
内蒙古乌兰察布市集宁区2023学年高三3月份模拟考试数学试题(含解析).doc_第2页
第2页 / 共19页
内蒙古乌兰察布市集宁区2023学年高三3月份模拟考试数学试题(含解析).doc_第3页
第3页 / 共19页
内蒙古乌兰察布市集宁区2023学年高三3月份模拟考试数学试题(含解析).doc_第4页
第4页 / 共19页
内蒙古乌兰察布市集宁区2023学年高三3月份模拟考试数学试题(含解析).doc_第5页
第5页 / 共19页
内蒙古乌兰察布市集宁区2023学年高三3月份模拟考试数学试题(含解析).doc_第6页
第6页 / 共19页
亲,该文档总共19页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设函数(,为自然对数的底数),定义在上的函数满足,且当时,若存在,且为函数的一个零点,则实数的取值范围为( )ABCD

2、2若直线ykx1与圆x2y21相交于P、Q两点,且POQ120(其中O为坐标原点),则k的值为()A B C或D和3洛书,古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上心有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数如图,若从四个阴数和五个阳数中分别随机选取1个数,则其和等于11的概率是( )ABCD4已知点为双曲线的右焦点,直线与双曲线交于A,B两点,若,则的面积为( )ABCD5某人造地球卫星的运行轨道是以地心为一个焦点的椭圆,其轨道的离心率为,设地球半径为,该卫星近地点离地面的距离为,则该卫星远地点离地面的距离为( )

3、ABCD6设集合则( )ABCD7函数的最小正周期是,则其图象向左平移个单位长度后得到的函数的一条对称轴是( )ABCD8已知集合AxN|x28x,B2,3,6,C2,3,7,则( )A2,3,4,5B2,3,4,5,6C1,2,3,4,5,6D1,3,4,5,6,79设,是两条不同的直线,是两个不同的平面,给出下列四个命题:若,则;若,则;若,则;若,则;其中真命题的个数为( )ABCD10执行如图所示的程序框图,若输出的,则处应填写( )ABCD11设集合,则( )ABCD12三棱锥中,侧棱底面,则该三棱锥的外接球的表面积为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13

4、某地区连续5天的最低气温(单位:)依次为8,0,2,则该组数据的标准差为_.14已知点为双曲线的右焦点,两点在双曲线上,且关于原点对称,若,设,且,则该双曲线的焦距的取值范围是_.15设,若函数有大于零的极值点,则实数的取值范围是_16已知函数,则曲线在点处的切线方程为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知六面体如图所示,平面,是棱上的点,且满足.(1)求证:直线平面;(2)求二面角的正弦值.18(12分)已知函数.(1)当时,解关于的不等式;(2)若对任意,都存在,使得不等式成立,求实数的取值范围.19(12分)已知各项均为正数的数列的前项和为,

5、且,(,且)(1)求数列的通项公式;(2)证明:当时,20(12分)如图,在直三棱柱中,为的中点,点在线段上,且平面(1)求证:;(2)求平面与平面所成二面角的正弦值21(12分)在ABC中,角A,B,C所对的边分别为a,b,c,且满足bcosAasinB1(1)求A;(2)已知a2,B,求ABC的面积22(10分)在平面四边形(图)中,与均为直角三角形且有公共斜边,设,将沿折起,构成如图所示的三棱锥,且使=. (1)求证:平面平面;(2)求二面角的余弦值.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目

6、要求的。1、D【答案解析】先构造函数,由题意判断出函数的奇偶性,再对函数求导,判断其单调性,进而可求出结果.【题目详解】构造函数,因为,所以,所以为奇函数,当时,所以在上单调递减,所以在R上单调递减.因为存在,所以,所以,化简得,所以,即令,因为为函数的一个零点,所以在时有一个零点因为当时,所以函数在时单调递减,由选项知,又因为,所以要使在时有一个零点,只需使,解得,所以a的取值范围为,故选D.【答案点睛】本题主要考查函数与方程的综合问题,难度较大.2、C【答案解析】直线过定点,直线y=kx+1与圆x2+y2=1相交于P、Q两点,且POQ=120(其中O为原点),可以发现QOx的大小,求得结果

7、【题目详解】如图,直线过定点(0,1),POQ=120OPQ=30,1=120,2=60,由对称性可知k=故选C【答案点睛】本题考查过定点的直线系问题,以及直线和圆的位置关系,是基础题3、A【答案解析】基本事件总数,利用列举法求出其和等于11包含的基本事件有4个,由此能求出其和等于11的概率【题目详解】解:从四个阴数和五个阳数中分别随机选取1个数,基本事件总数,其和等于11包含的基本事件有:,共4个,其和等于的概率故选:【答案点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,属于基础题4、D【答案解析】设双曲线C的左焦点为,连接,由对称性可知四边形是平行四边形,设,得,求出的

8、值,即得解.【题目详解】设双曲线C的左焦点为,连接,由对称性可知四边形是平行四边形,所以,.设,则,又.故,所以.故选:D【答案点睛】本题主要考查双曲线的简单几何性质,考查余弦定理解三角形和三角形面积的计算,意在考查学生对这些知识的理解掌握水平.5、A【答案解析】由题意画出图形,结合椭圆的定义,结合椭圆的离心率,求出椭圆的长半轴a,半焦距c,即可确定该卫星远地点离地面的距离.【题目详解】椭圆的离心率:,( c为半焦距; a为长半轴),设卫星近地点,远地点离地面距离分别为r,n,如图:则所以,故选:A【答案点睛】本题主要考查了椭圆的离心率的求法,注意半焦距与长半轴的求法,是解题的关键,属于中档题

9、.6、C【答案解析】直接求交集得到答案.【题目详解】集合,则.故选:.【答案点睛】本题考查了交集运算,属于简单题.7、D【答案解析】由三角函数的周期可得,由函数图像的变换可得, 平移后得到函数解析式为,再求其对称轴方程即可.【题目详解】解:函数的最小正周期是,则函数,经过平移后得到函数解析式为,由,得,当时,.故选D.【答案点睛】本题考查了正弦函数图像的性质及函数图像的平移变换,属基础题.8、C【答案解析】根据集合的并集、补集的概念,可得结果.【题目详解】集合AxN|x28xxN|0x8,所以集合A1,2,3,4,5,6,7B2,3,6,C2,3,7,故1,4,5,6,所以1,2,3,4,5,

10、6.故选:C.【答案点睛】本题考查的是集合并集,补集的概念,属基础题.9、C【答案解析】利用线线、线面、面面相应的判定与性质来解决.【题目详解】如果两条平行线中一条垂直于这个平面,那么另一条也垂直于这个平面知正确;当直线平行于平面与平面的交线时也有,故错误;若,则垂直平面内以及与平面平行的所有直线,故正确;若,则存在直线且,因为,所以,从而,故正确.故选:C.【答案点睛】本题考查空间中线线、线面、面面的位置关系,里面涉及到了相应的判定定理以及性质定理,是一道基础题.10、B【答案解析】模拟程序框图运行分析即得解.【题目详解】;.所以处应填写“”故选:B【答案点睛】本题主要考查程序框图,意在考查

11、学生对这些知识的理解掌握水平.11、D【答案解析】利用一元二次不等式的解法和集合的交运算求解即可.【题目详解】由题意知,集合,由集合的交运算可得,.故选:D【答案点睛】本题考查一元二次不等式的解法和集合的交运算;考查运算求解能力;属于基础题.12、B【答案解析】由题,侧棱底面,则根据余弦定理可得 ,的外接圆圆心 三棱锥的外接球的球心到面的距离 则外接球的半径 ,则该三棱锥的外接球的表面积为 点睛:本题考查的知识点是球内接多面体,熟练掌握球的半径 公式是解答的关键二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】先求出这组数据的平均数,再求出这组数据的方差,由此能求出该组数据的标

12、准差【题目详解】解:某地区连续5天的最低气温(单位:依次为8,0,2,平均数为:,该组数据的方差为:,该组数据的标准差为1故答案为:1【答案点睛】本题考查一组数据据的标准差的求法,考查平均数、方差、标准差的定义等基础知识,考查运算求解能力,属于基础题14、【答案解析】设双曲线的左焦点为,连接,由于.所以四边形为矩形,故,由双曲线定义可得,再求的值域即可.【题目详解】如图,设双曲线的左焦点为,连接,由于.所以四边形为矩形,故.在中,由双曲线的定义可得,.故答案为:【答案点睛】本题考查双曲线定义及其性质,涉及到求余弦型函数的值域,考查学生的运算能力,是一道中档题.15、【答案解析】先求导数,求解导

13、数为零的根,结合根的分布求解.【题目详解】因为,所以,令得,因为函数有大于0的极值点,所以,即.【答案点睛】本题主要考查利用导数研究函数的极值点问题,极值点为导数的变号零点,侧重考查转化化归思想.16、【答案解析】根据导数的几何意义求出切线的斜率,利用点斜式求切线方程.【题目详解】因为,所以,又故切线方程为,整理为,故答案为:【答案点睛】本题主要考查了导数的几何意义,切线方程,属于容易题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【答案解析】(1)连接,设,连接.通过证明,证得直线平面.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出二面角的正弦值.【题目详解】(1)连接,设,连接,因为,所以,所以,在中,因为,所以,且平面,故平面.(2)因为,所以,因为,平面,所以平面,所以,取所在直线为轴,取所在直线为轴,取所在直线为轴,建立如图所示的空间直角坐标系,由已知可得,所以,因为,所以,所以点的坐标为,所以,设为平面的法向量,则,令,解得,所以,即为平面的一个法向量.,同理可求得平面的一个法向量为所以所以二面角的正弦值为【答案点睛】本小题主要

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 教辅习题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2