1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并
2、交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1函数的图象在点处的切线为,则在轴上的截距为( )ABCD2已知双曲线的左焦点为,直线经过点且与双曲线的一条渐近线垂直,直线与双曲线的左支交于不同的两点,若,则该双曲线的离心率为( )ABCD3半正多面体(semiregular solid) 亦称“阿基米德多面体”,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形为面的半正多面体.如图所示,图中网格是边长为1的正方形,粗线部分是某二十四等边体的三
3、视图,则该几何体的体积为( )ABCD4若直线ykx1与圆x2y21相交于P、Q两点,且POQ120(其中O为坐标原点),则k的值为()A B C或D和5如图所示的程序框图,当其运行结果为31时,则图中判断框处应填入的是( )ABCD6已知函数,若函数的极大值点从小到大依次记为,并记相应的极大值为,则的值为( )ABCD7设是虚数单位,若复数,则( )ABCD8已知函数的最小正周期为的图象向左平移个单位长度后关于轴对称,则的单调递增区间为( )ABCD9为计算, 设计了如图所示的程序框图,则空白框中应填入( )ABCD10一个几何体的三视图如图所示,正视图、侧视图和俯视图都是由一个边长为的正方
4、形及正方形内一段圆弧组成,则这个几何体的表面积是( )ABCD11造纸术、印刷术、指南针、火药被称为中国古代四大发明,此说法最早由英国汉学家艾约瑟提出并为后来许多中国的历史学家所继承,普遍认为这四种发明对中国古代的政治,经济,文化的发展产生了巨大的推动作用.某小学三年级共有学生500名,随机抽查100名学生并提问中国古代四大发明,能说出两种发明的有45人,能说出3种及其以上发明的有32人,据此估计该校三级的500名学生中,对四大发明只能说出一种或一种也说不出的有( )A69人B84人C108人D115人12已知双曲线:的左右焦点分别为,为双曲线上一点,为双曲线C渐近线上一点,均位于第一象限,且
5、,则双曲线的离心率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13若,则的展开式中含的项的系数为_.14,则f(f(2)的值为_15定义,已知,若恰好有3个零点,则实数的取值范围是_.16设为抛物线的焦点,为上互相不重合的三点,且、成等差数列,若线段的垂直平分线与轴交于,则的坐标为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数的导函数的两个零点为和(1)求的单调区间;(2)若的极小值为,求在区间上的最大值18(12分)已知函数,记不等式的解集为.(1)求;(2)设,证明:.19(12分)如图,四棱锥中,侧面为等腰直角三角形,平面(1
6、)求证:平面;(2)求直线与平面所成的角的正弦值20(12分)已知函数,.(1)若曲线在点处的切线方程为,求,;(2)当时,求实数的取值范围.21(12分)已知抛物线和圆,倾斜角为45的直线过抛物线的焦点,且与圆相切(1)求的值;(2)动点在抛物线的准线上,动点在上,若在点处的切线交轴于点,设求证点在定直线上,并求该定直线的方程22(10分)已知点,且,满足条件的点的轨迹为曲线(1)求曲线的方程;(2)是否存在过点的直线,直线与曲线相交于两点,直线与轴分别交于两点,使得?若存在,求出直线的方程;若不存在,请说明理由2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5
7、分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】求出函数在处的导数后可得曲线在处的切线方程,从而可求切线的纵截距.【题目详解】,故,所以曲线在处的切线方程为:.令,则,故切线的纵截距为.故选:A.【答案点睛】本题考查导数的几何意义以及直线的截距,注意直线的纵截距指直线与轴交点的纵坐标,因此截距有正有负,本题属于基础题.2、A【答案解析】直线的方程为,令和双曲线方程联立,再由得到两交点坐标纵坐标关系进行求解即可.【题目详解】由题意可知直线的方程为,不妨设.则,且将代入双曲线方程中,得到设则由,可得,故则,解得则所以双曲线离心率故选:A【答案点睛】此题考查双曲线
8、和直线相交问题,联立直线和双曲线方程得到两交点坐标关系和已知条件即可求解,属于一般性题目.3、D【答案解析】根据三视图作出该二十四等边体如下图所示,求出该几何体的棱长,可以将该几何体看作是相应的正方体沿各棱的中点截去8个三棱锥所得到的,可求出其体积.【题目详解】如下图所示,将该二十四等边体的直观图置于棱长为2的正方体中,由三视图可知,该几何体的棱长为,它是由棱长为2的正方体沿各棱中点截去8个三棱锥所得到的,该几何体的体积为,故选:D.【答案点睛】本题考查三视图,几何体的体积,对于二十四等边体比较好的处理方式是由正方体各棱的中点得到,属于中档题.4、C【答案解析】直线过定点,直线y=kx+1与圆
9、x2+y2=1相交于P、Q两点,且POQ=120(其中O为原点),可以发现QOx的大小,求得结果【题目详解】如图,直线过定点(0,1),POQ=120OPQ=30,1=120,2=60,由对称性可知k=故选C【答案点睛】本题考查过定点的直线系问题,以及直线和圆的位置关系,是基础题5、C【答案解析】根据程序框图的运行,循环算出当时,结束运行,总结分析即可得出答案.【题目详解】由题可知,程序框图的运行结果为31,当时,;当时,;当时,;当时,;当时,.此时输出.故选:C.【答案点睛】本题考查根据程序框图的循环结构,已知输出结果求条件框,属于基础题.6、C【答案解析】对此分段函数的第一部分进行求导分
10、析可知,当时有极大值,而后一部分是前一部分的定义域的循环,而值域则是每一次前面两个单位长度定义域的值域的2倍,故此得到极大值点的通项公式,且相应极大值,分组求和即得【题目详解】当时,显然当时有,经单调性分析知为的第一个极值点又时,均为其极值点函数不能在端点处取得极值,对应极值,故选:C【答案点睛】本题考查基本函数极值的求解,从函数表达式中抽离出相应的等差数列和等比数列,最后分组求和,要求学生对数列和函数的熟悉程度高,为中档题7、A【答案解析】结合复数的除法运算和模长公式求解即可【题目详解】复数,则,故选:A.【答案点睛】本题考查复数的除法、模长、平方运算,属于基础题8、D【答案解析】先由函数的
11、周期和图象的平移后的函数的图象性质得出函数的解析式,从而得出的解析式,再根据正弦函数的单调递增区间得出函数的单调递增区间,可得选项.【题目详解】因为函数的最小正周期是,所以,即,所以,的图象向左平移个单位长度后得到的函数解析式为,由于其图象关于轴对称,所以,又,所以,所以,所以, 因为的递增区间是:,由,得:,所以函数的单调递增区间为().故选:D.【答案点睛】本题主要考查正弦型函数的周期性,对称性,单调性,图象的平移,在进行图象的平移时,注意自变量的系数,属于中档题.9、A【答案解析】根据程序框图输出的S的值即可得到空白框中应填入的内容【题目详解】由程序框图的运行,可得:S0,i0满足判断框
12、内的条件,执行循环体,a1,S1,i1满足判断框内的条件,执行循环体,a2(2),S1+2(2),i2满足判断框内的条件,执行循环体,a3(2)2,S1+2(2)+3(2)2,i3观察规律可知:满足判断框内的条件,执行循环体,a99(2)99,S1+2(2)+3(2)2+1(2)99,i1,此时,应该不满足判断框内的条件,退出循环,输出S的值,所以判断框中的条件应是i1故选:A【答案点睛】本题考查了当型循环结构,当型循环是先判断后执行,满足条件执行循环,不满足条件时算法结束,属于基础题10、C【答案解析】画出直观图,由球的表面积公式求解即可【题目详解】这个几何体的直观图如图所示,它是由一个正方
13、体中挖掉个球而形成的,所以它的表面积为.故选:C【答案点睛】本题考查三视图以及几何体的表面积的计算,考查空间想象能力和运算求解能力.11、D【答案解析】先求得名学生中,只能说出一种或一种也说不出的人数,由此利用比例,求得名学生中对四大发明只能说出一种或一种也说不出的人数.【题目详解】在这100名学生中,只能说出一种或一种也说不出的有人,设对四大发明只能说出一种或一种也说不出的有人,则,解得人.故选:D【答案点睛】本小题主要考查利用样本估计总体,属于基础题.12、D【答案解析】 由双曲线的方程的左右焦点分别为,为双曲线上的一点,为双曲线的渐近线上的一点,且都位于第一象限,且,可知为的三等分点,且
14、,点在直线上,并且,则,设,则,解得,即,代入双曲线的方程可得,解得,故选D点睛:本题考查了双曲线的几何性质,离心率的求法,考查了转化思想以及运算能力,双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:求出,代入公式;只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围)二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】首先根据定积分的应用求出的值,进一步利用二项式的展开式的应用求出结果.【题目详解】,根据二项式展开式通项:,令,解得,所以含的项的系数.故答案为:【答案点睛】本题考查定积分,二项式的展开式的应用,主要考查学生的运算求解能力,属于基础题.14、1【答案解析】先求f(1),再根据f(1)值所在区间求