收藏 分享(赏)

四川省绵阳南山中学2023学年高考仿真卷数学试题(含解析).doc

上传人:g****t 文档编号:14402 上传时间:2023-01-06 格式:DOC 页数:17 大小:1.58MB
下载 相关 举报
四川省绵阳南山中学2023学年高考仿真卷数学试题(含解析).doc_第1页
第1页 / 共17页
四川省绵阳南山中学2023学年高考仿真卷数学试题(含解析).doc_第2页
第2页 / 共17页
四川省绵阳南山中学2023学年高考仿真卷数学试题(含解析).doc_第3页
第3页 / 共17页
四川省绵阳南山中学2023学年高考仿真卷数学试题(含解析).doc_第4页
第4页 / 共17页
四川省绵阳南山中学2023学年高考仿真卷数学试题(含解析).doc_第5页
第5页 / 共17页
四川省绵阳南山中学2023学年高考仿真卷数学试题(含解析).doc_第6页
第6页 / 共17页
亲,该文档总共17页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求

2、的。1设非零向量,满足,且与的夹角为,则“”是“”的( )A充分非必要条件B必要非充分条件C充分必要条件D既不充分也不必要条件2若将函数的图象上各点横坐标缩短到原来的(纵坐标不变)得到函数的图象,则下列说法正确的是()A函数在上单调递增B函数的周期是C函数的图象关于点对称D函数在上最大值是13已知复数z1=3+4i,z2=a+i,且z1是实数,则实数a等于()ABC-D-4设全集U=R,集合,则()ABCD5如图,在中,是上一点,若,则实数的值为( )ABCD6函数满足对任意都有成立,且函数的图象关于点对称,则的值为( )A0B2C4D17中心在原点,对称轴为坐标轴的双曲线的两条渐近线与圆都相

3、切,则双曲线的离心率是( )A2或B2或C或D或8如图是一个算法流程图,则输出的结果是()ABCD9若复数为虚数单位在复平面内所对应的点在虚轴上,则实数a为( )AB2CD10若集合,则( )ABCD11如果实数满足条件,那么的最大值为( )ABCD12设,分别为双曲线(a0,b0)的左、右焦点,过点作圆 的切线与双曲线的左支交于点P,若,则双曲线的离心率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知椭圆的左焦点为,点在椭圆上且在轴的上方,若线段的中点在以原点为圆心,为半径的圆上,则直线的斜率是_.14过抛物线C:()的焦点F且倾斜角为锐角的直线l与C交于A,B两点,

4、过线段的中点N且垂直于l的直线与C的准线交于点M,若,则l的斜率为_.15已知i为虚数单位,复数,则_16在中,是的角平分线,设,则实数的取值范围是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知中,是上一点(1)若,求的长;(2)若,求的值18(12分)在锐角中,分别是角,所对的边,的面积,且满足,则的取值范围是( )ABCD19(12分)已知椭圆的离心率为,直线过椭圆的右焦点,过的直线交椭圆于两点(均异于左、右顶点).(1)求椭圆的方程;(2)已知直线,为椭圆的右顶点. 若直线交于点,直线交于点,试判断是否为定值,若是,求出定值;若不是,说明理由.20(

5、12分)已知函数,.(1)若不等式的解集为,求的值.(2)若当时,求的取值范围.21(12分)已知抛物线的焦点为,点在抛物线上,直线过点,且与抛物线交于,两点(1)求抛物线的方程及点的坐标;(2)求的最大值22(10分)己知,函数.(1)若,解不等式;(2)若函数,且存在使得成立,求实数的取值范围.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】利用数量积的定义可得,即可判断出结论【题目详解】解:,解得,解得, “”是“”的充分必要条件故选:C【答案点睛】本题主要考查平面向量数量

6、积的应用,考查推理能力与计算能力,属于基础题2、A【答案解析】根据三角函数伸缩变换特点可得到解析式;利用整体对应的方式可判断出在上单调递增,正确;关于点对称,错误;根据正弦型函数最小正周期的求解可知错误;根据正弦型函数在区间内值域的求解可判断出最大值无法取得,错误.【题目详解】将横坐标缩短到原来的得:当时,在上单调递增 在上单调递增,正确;的最小正周期为: 不是的周期,错误;当时,关于点对称,错误;当时, 此时没有最大值,错误.本题正确选项:【答案点睛】本题考查正弦型函数的性质,涉及到三角函数的伸缩变换、正弦型函数周期性、单调性和对称性、正弦型函数在一段区间内的值域的求解;关键是能够灵活应用整

7、体对应的方式,通过正弦函数的图象来判断出所求函数的性质.3、A【答案解析】分析:计算,由z1,是实数得,从而得解.详解:复数z1=3+4i,z2=a+i,.所以z1,是实数,所以,即.故选A.点睛:本题主要考查了复数共轭的概念,属于基础题.4、A【答案解析】求出集合M和集合N,,利用集合交集补集的定义进行计算即可【题目详解】,则,故选:A【答案点睛】本题考查集合的交集和补集的运算,考查指数不等式和二次不等式的解法,属于基础题5、C【答案解析】由题意,可根据向量运算法则得到(1m),从而由向量分解的唯一性得出关于t的方程,求出t的值.【题目详解】由题意及图,又,所以,(1m),又t,所以,解得m

8、,t,故选C【答案点睛】本题考查平面向量基本定理,根据分解的唯一性得到所求参数的方程是解答本题的关键,本题属于基础题.6、C【答案解析】根据函数的图象关于点对称可得为奇函数,结合可得是周期为4的周期函数,利用及可得所求的值.【题目详解】因为函数的图象关于点对称,所以的图象关于原点对称,所以为上的奇函数.由可得,故,故是周期为4的周期函数.因为,所以.因为,故,所以.故选:C.【答案点睛】本题考查函数的奇偶性和周期性,一般地,如果上的函数满足,那么是周期为的周期函数,本题属于中档题.7、A【答案解析】根据题意,由圆的切线求得双曲线的渐近线的方程,再分焦点在x、y轴上两种情况讨论,进而求得双曲线的

9、离心率【题目详解】设双曲线C的渐近线方程为y=kx,是圆的切线得: ,得双曲线的一条渐近线的方程为 焦点在x、y轴上两种情况讨论:当焦点在x轴上时有: 当焦点在y轴上时有: 求得双曲线的离心率 2或故选:A【答案点睛】本小题主要考查直线与圆的位置关系、双曲线的简单性质等基础知识,考查运算求解能力,考查数形结合思想解题的关键是:由圆的切线求得直线 的方程,再由双曲线中渐近线的方程的关系建立等式,从而解出双曲线的离心率的值此题易忽视两解得出错误答案8、A【答案解析】执行程序框图,逐次计算,根据判断条件终止循环,即可求解,得到答案【题目详解】由题意,执行上述的程序框图:第1次循环:满足判断条件,;第

10、2次循环:满足判断条件,;第3次循环:满足判断条件,;不满足判断条件,输出计算结果,故选A【答案点睛】本题主要考查了循环结构的程序框图的结果的计算与输出,其中解答中执行程序框图,逐次计算,根据判断条件终止循环是解答的关键,着重考查了运算与求解能力,属于基础题9、D【答案解析】利用复数代数形式的乘除运算化简,再由实部为求得值【题目详解】解:在复平面内所对应的点在虚轴上,即故选D【答案点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题10、A【答案解析】用转化的思想求出中不等式的解集,再利用并集的定义求解即可【题目详解】解:由集合,解得,则故选:【答案点睛】本题考查了

11、并集及其运算,分式不等式的解法,熟练掌握并集的定义是解本题的关键属于基础题11、B【答案解析】解:当直线过点时,最大,故选B12、C【答案解析】设过点作圆 的切线的切点为,根据切线的性质可得,且,再由和双曲线的定义可得,得出为中点,则有,得到,即可求解.【题目详解】设过点作圆 的切线的切点为,所以是中点,.故选:C.【答案点睛】本题考查双曲线的性质、双曲线定义、圆的切线性质,意在考查直观想象、逻辑推理和数学计算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】结合图形可以发现,利用三角形中位线定理,将线段长度用坐标表示成圆的方程,与椭圆方程联立可进一步求解.利

12、用焦半径及三角形中位线定理,则更为简洁.【题目详解】方法1:由题意可知,由中位线定理可得,设可得,联立方程可解得(舍),点在椭圆上且在轴的上方,求得,所以方法2:焦半径公式应用解析1:由题意可知,由中位线定理可得,即求得,所以.【答案点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、直线与圆的位置关系,利用数形结合思想,是解答解析几何问题的重要途径.14、【答案解析】分别过A,B,N作抛物线的准线的垂线,垂足分别为,根据抛物线定义和求得,从而求得直线l的倾斜角.【题目详解】分别过A,B,N作抛物线的准线的垂线,垂足分别为,由抛物线的定义知,因为,所以,所以,即直线的倾斜角为,又直线与直线l垂直

13、且直线l的倾斜角为锐角,所以直线l的倾斜角为,.故答案为:【答案点睛】此题考查抛物线的定义,根据已知条件做出辅助线利用抛物线定义和几何关系即可求解,属于较易题目.15、【答案解析】先把复数进行化简,然后利用求模公式可得结果.【题目详解】故答案为:.【答案点睛】本题主要考查复数模的求解,利用复数的运算把复数化为的形式是求解的关键,侧重考查数学运算的核心素养.16、【答案解析】设,由,用面积公式表示面积可得到,利用,即得解.【题目详解】设,由得:,化简得,由于,故.故答案为:【答案点睛】本题考查了解三角形综合,考查了学生转化划归,综合分析,数学运算能力,属于中档题.三、解答题:共70分。解答应写出

14、文字说明、证明过程或演算步骤。17、(1) (2)【答案解析】(1)运用三角形面积公式求出的长度,然后再运用余弦定理求出的长.(2)运用正弦定理分别表示出和,结合已知条件计算出结果.【题目详解】(1)由在中,由余弦定理可得(2)由已知得在中,由正弦定理可知在中,由正弦定理可知故【答案点睛】本题考查了正弦定理、三角形面积公式以及余弦定理,结合三角形熟练运用各公式是解题关键,此类题目是常考题型,能够运用公式进行边角互化,需要掌握解题方法.18、A【答案解析】由正弦定理化简得,解得,进而得到,利用正切的倍角公式求得,根据三角形的面积公式,求得,进而化简,即可求解.【题目详解】由题意,在锐角中,满足,由正弦定理可得,即,可得,所以,即,所以,所以,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 教辅习题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2