1、2023学年高考数学模拟测试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知实数x,y满足,则的最小值等于( )ABCD2若,则的虚部是( )ABCD3已知双曲线,为坐标原点,、为其左、右焦点,点在的渐近线上,且,则该双曲线的渐近线方程为( )AB
2、CD4已知的部分图象如图所示,则的表达式是( )ABCD5 “”是“函数的图象关于直线对称”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件6已知函数,若,对任意恒有,在区间上有且只有一个使,则的最大值为( )ABCD7设函数的定义域为,命题:,的否定是( )A,B,C,D,8已知函数,则( )A函数在上单调递增B函数在上单调递减C函数图像关于对称D函数图像关于对称9已知等比数列满足,等差数列中,为数列的前项和,则( )A36B72CD10已知六棱锥各顶点都在同一个球(记为球)的球面上,且底面为正六边形,顶点在底面上的射影是正六边形的中心,若,则球的表面积为( )ABC
3、D11已知的垂心为,且是的中点,则( )A14B12C10D812把满足条件(1),(2),使得的函数称为“D函数”,下列函数是“D函数”的个数为( ) A1个B2个C3个D4个二、填空题:本题共4小题,每小题5分,共20分。13若的展开式中各项系数之和为32,则展开式中x的系数为_14抛物线的焦点坐标为_.15如图是九位评委打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均分为_16在中,则绕所在直线旋转一周所形成的几何体的表面积为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数f(x)=xlnx,g(x)=,(1)求f(x)的最小值
4、;(2)对任意,都有恒成立,求实数a的取值范围;(3)证明:对一切,都有成立18(12分)如图,焦点在轴上的椭圆与焦点在轴上的椭圆都过点,中心都在坐标原点,且椭圆与的离心率均为()求椭圆与椭圆的标准方程;()过点M的互相垂直的两直线分别与,交于点A,B(点A、B不同于点M),当的面积取最大值时,求两直线MA,MB斜率的比值.19(12分)在直角坐标系中,曲线的参数方程为(为参数,),点.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程,并指出其形状;(2)曲线与曲线交于,两点,若,求的值.20(12分)以坐标原点为极点,轴的正半轴为极轴,且在两种坐标
5、系中取相同的长度单位,建立极坐标系,判断直线为参数)与圆的位置关系21(12分)已知向量,函数(1)求函数的最小正周期及单调递增区间;(2)在中,三内角的对边分别为,已知函数的图像经过点,成等差数列,且,求a的值22(10分)已知中,角所对边的长分别为,且(1)求角的大小;(2)求的值.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】设,去绝对值,根据余弦函数的性质即可求出【题目详解】因为实数,满足,设,恒成立,故则的最小值等于.故选:【答案点睛】本题考查了椭圆的参数方程、三角函
6、数的图象和性质,考查了运算能力和转化能力,意在考查学生对这些知识的理解掌握水平2、D【答案解析】通过复数的乘除运算法则化简求解复数为:的形式,即可得到复数的虚部.【题目详解】由题可知,所以的虚部是1.故选:D.【答案点睛】本题考查复数的代数形式的混合运算,复数的基本概念,属于基础题.3、D【答案解析】根据,先确定出的长度,然后利用双曲线定义将转化为的关系式,化简后可得到的值,即可求渐近线方程.【题目详解】如图所示:因为,所以,又因为,所以,所以,所以,所以,所以,所以,所以渐近线方程为.故选:D.【答案点睛】本题考查根据双曲线中的长度关系求解渐近线方程,难度一般.注意双曲线的焦点到渐近线的距离
7、等于虚轴长度的一半.4、D【答案解析】由图象求出以及函数的最小正周期的值,利用周期公式可求得的值,然后将点的坐标代入函数的解析式,结合的取值范围求出的值,由此可得出函数的解析式.【题目详解】由图象可得,函数的最小正周期为,.将点代入函数的解析式得,得,则,因此,.故选:D.【答案点睛】本题考查利用图象求三角函数解析式,考查分析问题和解决问题的能力,属于中等题.5、A【答案解析】先求解函数的图象关于直线对称的等价条件,得到,分析即得解.【题目详解】若函数的图象关于直线对称,则,解得,故“”是“函数的图象关于直线对称”的充分不必要条件故选:A【答案点睛】本题考查了充分不必要条件的判断,考查了学生逻
8、辑推理,概念理解,数学运算的能力,属于基础题.6、C【答案解析】根据的零点和最值点列方程组,求得的表达式(用表示),根据在上有且只有一个最大值,求得的取值范围,求得对应的取值范围,由为整数对的取值进行验证,由此求得的最大值.【题目详解】由题意知,则其中,又在上有且只有一个最大值,所以,得,即,所以,又,因此当时,此时取可使成立,当时,所以当或时,都成立,舍去;当时,此时取可使成立,当时,所以当或时,都成立,舍去;当时,此时取可使成立,当时,所以当时,成立;综上所得的最大值为故选:C【答案点睛】本小题主要考查三角函数的零点和最值,考查三角函数的性质,考查化归与转化的数学思想方法,考查分类讨论的数
9、学思想方法,属于中档题.7、D【答案解析】根据命题的否定的定义,全称命题的否定是特称命题求解.【题目详解】因为:,是全称命题,所以其否定是特称命题,即,.故选:D【答案点睛】本题主要考查命题的否定,还考查了理解辨析的能力,属于基础题.8、C【答案解析】依题意可得,即函数图像关于对称,再求出函数的导函数,即可判断函数的单调性;【题目详解】解:由,所以函数图像关于对称,又,在上不单调.故正确的只有C,故选:C【答案点睛】本题考查函数的对称性的判定,利用导数判断函数的单调性,属于基础题.9、A【答案解析】根据是与的等比中项,可求得,再利用等差数列求和公式即可得到.【题目详解】等比数列满足,所以,又,
10、所以,由等差数列的性质可得.故选:A【答案点睛】本题主要考查的是等比数列的性质,考查等差数列的求和公式,考查学生的计算能力,是中档题.10、D【答案解析】由题意,得出六棱锥为正六棱锥,求得,再结合球的性质,求得球的半径,利用表面积公式,即可求解.【题目详解】由题意,六棱锥底面为正六边形,顶点在底面上的射影是正六边形的中心,可得此六棱锥为正六棱锥,又由,所以, 在直角中,因为,所以,设外接球的半径为,在中,可得,即,解得,所以外接球的表面积为.故选:D.【答案点睛】本题主要考查了正棱锥的几何结构特征,以及外接球的表面积的计算,其中解答中熟记几何体的结构特征,熟练应用球的性质求得球的半径是解答的关
11、键,着重考查了空间想象能力,以及推理与计算能力,属于中档试题.11、A【答案解析】由垂心的性质,得到,可转化,又即得解.【题目详解】因为为的垂心,所以,所以,而, 所以,因为是的中点,所以故选:A【答案点睛】本题考查了利用向量的线性运算和向量的数量积的运算率,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.12、B【答案解析】满足(1)(2)的函数是偶函数且值域关于原点对称,分别对所给函数进行验证.【题目详解】满足(1)(2)的函数是偶函数且值域关于原点对称,不满足(2);不满足(1);不满足(2);均满足(1)(2).故选:B.【答案点睛】本题考查新定义函数的问题,涉及到函数的性质
12、,考查学生逻辑推理与分析能力,是一道容易题.二、填空题:本题共4小题,每小题5分,共20分。13、2025【答案解析】利用赋值法,结合展开式中各项系数之和列方程,由此求得的值.再利用二项式展开式的通项公式,求得展开式中的系数.【题目详解】依题意,令,解得,所以,则二项式的展开式的通项为:令,得,所以的系数为.故答案为:2025【答案点睛】本小题主要考查二项式展开式各项系数之和,考查二项式展开式指定项系数的求法,属于基础题.14、【答案解析】变换得到,计算焦点得到答案.【题目详解】抛物线的标准方程为,所以焦点坐标为故答案为:【答案点睛】本题考查了抛物线的焦点坐标,属于简单题.15、1【答案解析】
13、写出茎叶图对应的所有的数,去掉最高分,最低分,再求平均分【题目详解】解:所有的数为:77,78,82,84,84,86,88,93,94,共9个数,去掉最高分,最低分,剩下78,82,84,84,86,88,93,共7个数,平均分为,故答案为1【答案点睛】本题考查茎叶图及平均数的计算,属于基础题16、【答案解析】由题知该旋转体为两个倒立的圆锥底对底组合在一起,根据圆锥侧面积计算公式可得.【题目详解】解:由题知该旋转体为两个倒立的圆锥底对底组合在一起,在中,如下图所示,底面圆的半径为,则所形成的几何体的表面积为.故答案为:.【答案点睛】本题考查旋转体的表面积计算问题,属于基础题.三、解答题:共7
14、0分。解答应写出文字说明、证明过程或演算步骤。17、 (1) (2)( (3)见证明【答案解析】(1)先求函数导数,再求导函数零点,列表分析导函数符号变化规律确定函数单调性,最后根据函数单调性确定最小值取法;(2)先分离不等式,转化为对应函数最值问题,利用导数求对应函数最值即得结果;(3)构造两个函数,再利用两函数最值关系进行证明.【题目详解】(1)当时,单调递减,当时,单调递增,所以函数f(x)的最小值为f()=;(2)因为所以问题等价于在上恒成立,记则,因为,令函数f(x)在(0,1)上单调递减;函数f(x)在(1,+)上单调递增;即,即实数a的取值范围为(.(3)问题等价于证明由(1)知道 ,令函数在(0,1)上单调递增;函数在(1,+)上单调递减;所以,因此,因