1、2023学年高考数学模拟测试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图,在平行四边形中,为对角线的交点,点为平行四边形外一点,且,则( )ABCD2函数的部分图象如图中实线所示,图中圆
2、与的图象交于两点,且在轴上,则下列说法中正确的是A函数的最小正周期是B函数的图象关于点成中心对称C函数在单调递增D函数的图象向右平移后关于原点成中心对称3一个几何体的三视图如图所示,则该几何体的体积为( )ABCD4已知椭圆内有一条以点为中点的弦,则直线的方程为( )ABCD5设i是虚数单位,若复数是纯虚数,则a的值为( )AB3C1D6已知直线:()与抛物线:交于(坐标原点),两点,直线:与抛物线交于,两点.若,则实数的值为( )ABCD7已知集合,集合,则()ABCD8如图,在三棱柱中,底面为正三角形,侧棱垂直底面,.若分别是棱上的点,且,则异面直线与所成角的余弦值为( )ABCD9已知命
3、题:R,;命题 :R,则下列命题中为真命题的是( )ABCD10设函数的定义域为,满足,且当时,.若对任意,都有,则的取值范围是( ).ABCD11已知复数是正实数,则实数的值为( )ABCD12在菱形中,分别为,的中点,则( )ABC5D二、填空题:本题共4小题,每小题5分,共20分。13在中,角,的对边分别是,若,则的面积的最大值为_.14抛物线上到其焦点的距离为的点的个数为_15已知,则=_,_16(5分)有一道描述有关等差与等比数列的问题:有四个和尚在做法事之前按身高从低到高站成一列,已知前三个和尚的身高依次成等差数列,后三个和尚的身高依次成等比数列,且前三个和尚的身高之和为cm,中间
4、两个和尚的身高之和为cm,则最高的和尚的身高是_ cm三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知数列,其前项和为,满足,其中,.若,(),求证:数列是等比数列;若数列是等比数列,求,的值;若,且,求证:数列是等差数列.18(12分)设抛物线的焦点为,准线为,为过焦点且垂直于轴的抛物线的弦,已知以为直径的圆经过点.(1)求的值及该圆的方程;(2)设为上任意一点,过点作的切线,切点为,证明:.19(12分)已知椭圆:,不与坐标轴垂直的直线与椭圆交于,两点.()若线段的中点坐标为,求直线的方程;()若直线过点,点满足(,分别为直线,的斜率),求的值.20(12分
5、)已知椭圆的焦点在轴上,且顺次连接四个顶点恰好构成了一个边长为且面积为的菱形(1)求椭圆的方程;(2)设,过椭圆右焦点的直线交于、两点,若对满足条件的任意直线,不等式恒成立,求的最小值.21(12分)在直角坐标系中,圆的参数方程为:(为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,且长度单位相同.(1)求圆的极坐标方程;(2)若直线:(为参数)被圆截得的弦长为,求直线的倾斜角.22(10分)已知是公比为的无穷等比数列,其前项和为,满足,_是否存在正整数,使得?若存在,求的最小值;若不存在,说明理由从,这三个条件中任选一个,补充在上面问题中并作答2023学年模拟测试卷参考答案(含详细
6、解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】连接,根据题目,证明出四边形为平行四边形,然后,利用向量的线性运算即可求出答案【题目详解】连接,由,知,四边形为平行四边形,可得四边形为平行四边形,所以.【答案点睛】本题考查向量的线性运算问题,属于基础题2、B【答案解析】根据函数的图象,求得函数,再根据正弦型函数的性质,即可求解,得到答案【题目详解】根据给定函数的图象,可得点的横坐标为,所以,解得,所以的最小正周期, 不妨令,由周期,所以,又,所以,所以,令,解得,当时,即函数的一个对称中心为,即函数的图象关于点成中心
7、对称故选B【答案点睛】本题主要考查了由三角函数的图象求解函数的解析式,以及三角函数的图象与性质,其中解答中根据函数的图象求得三角函数的解析式,再根据三角函数的图象与性质求解是解答的关键,着重考查了数形结合思想,以及运算与求解能力,属于基础题3、A【答案解析】根据题意,可得几何体,利用体积计算即可.【题目详解】由题意,该几何体如图所示:该几何体的体积.故选:A.【答案点睛】本题考查了常见几何体的三视图和体积计算,属于基础题4、C【答案解析】设,则,相减得到,解得答案.【题目详解】设,设直线斜率为,则,相减得到:,的中点为,即,故,直线的方程为:.故选:.【答案点睛】本题考查了椭圆内点差法求直线方
8、程,意在考查学生的计算能力和应用能力.5、D【答案解析】整理复数为的形式,由复数为纯虚数可知实部为0,虚部不为0,即可求解.【题目详解】由题,因为纯虚数,所以,则,故选:D【答案点睛】本题考查已知复数的类型求参数范围,考查复数的除法运算.6、D【答案解析】设,联立直线与抛物线方程,消去、列出韦达定理,再由直线与抛物线的交点求出点坐标,最后根据,得到方程,即可求出参数的值;【题目详解】解:设,由,得,解得或,.又由,得,或,又,代入解得.故选:D【答案点睛】本题考查直线与抛物线的综合应用,弦长公式的应用,属于中档题.7、D【答案解析】可求出集合,然后进行并集的运算即可【题目详解】解:,;故选【答
9、案点睛】考查描述法、区间的定义,对数函数的单调性,以及并集的运算8、B【答案解析】建立空间直角坐标系,利用向量法计算出异面直线与所成角的余弦值.【题目详解】依题意三棱柱底面是正三角形且侧棱垂直于底面.设的中点为,建立空间直角坐标系如下图所示.所以,所以.所以异面直线与所成角的余弦值为.故选:B【答案点睛】本小题主要考查异面直线所成的角的求法,属于中档题.9、B【答案解析】根据,可知命题的真假,然后对取值,可得命题 的真假,最后根据真值表,可得结果.【题目详解】对命题:可知,所以R,故命题为假命题命题 :取,可知所以R,故命题为真命题所以为真命题故选:B【答案点睛】本题主要考查对命题真假的判断以
10、及真值表的应用,识记真值表,属基础题.10、B【答案解析】求出在的解析式,作出函数图象,数形结合即可得到答案.【题目详解】当时,又,所以至少小于7,此时,令,得,解得或,结合图象,故.故选:B.【答案点睛】本题考查不等式恒成立求参数的范围,考查学生数形结合的思想,是一道中档题.11、C【答案解析】将复数化成标准形式,由题意可得实部大于零,虚部等于零,即可得到答案.【题目详解】因为为正实数,所以且,解得.故选:C【答案点睛】本题考查复数的基本定义,属基础题.12、B【答案解析】据题意以菱形对角线交点为坐标原点建立平面直角坐标系,用坐标表示出,再根据坐标形式下向量的数量积运算计算出结果.【题目详解
11、】设与交于点,以为原点,的方向为轴,的方向为轴,建立直角坐标系,则,所以.故选:B.【答案点睛】本题考查建立平面直角坐标系解决向量的数量积问题,难度一般.长方形、正方形、菱形中的向量数量积问题,如果直接计算较麻烦可考虑用建系的方法求解.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】化简得到,根据余弦定理和均值不等式得到,根据面积公式计算得到答案.【题目详解】,即,故.根据余弦定理:,即.当时等号成立,故.故答案为:.【答案点睛】本题考查了三角恒等变换,余弦定理,均值不等式,面积公式,意在考查学生的综合应用能力和计算能力.14、【答案解析】设抛物线上任意一点的坐标为,根据抛物
12、线的定义求得,并求出对应的,即可得出结果.【题目详解】设抛物线上任意一点的坐标为,抛物线的准线方程为,由抛物线的定义得,解得,此时.因此,抛物线上到其焦点的距离为的点的个数为.故答案为:.【答案点睛】本题考查利用抛物线的定义求点的坐标,考查计算能力,属于基础题.15、196 3 【答案解析】由二项式定理及二项式展开式通项得:,令x=1,则1+a0+a1+a7=(1+1)(1-2)7=-2,所以a0+a1+a7=-3,得解【题目详解】由二项式(12x)7展开式的通项得,则,令x=1,则,所以a0+a1+a7=3,故答案为:196,3.【答案点睛】本题考查二项式定理及其通项,属于中等题.16、【答
13、案解析】依题意设前三个和尚的身高依次为,第四个(最高)和尚的身高为,则,解得,又,解得,又因为成等比数列,则公比,故.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)(3)见解析【答案解析】试题分析:(1)(), 所以,故数列是等比数列;(2)利用特殊值法,得,故;(3)得,所以,得,可证数列是等差数列.试题解析:(1)证明:若,则当(),所以,即,所以, 又由,得,即,所以,故数列是等比数列 (2)若是等比数列,设其公比为( ),当时,即,得, 当时,即,得,当时,即,得,-,得 , -,得 , 解得代入式,得 此时(),所以,是公比为的等比数列,故 (3)证明:若,由,得,又,解得由, ,代入得,所以,成等差数列,由,得,两式相减得:即所以相减得:所以所以, 因为,所以,即数列是等差数列.18、(1),圆的方程为:.(2)答案见解析【答案解析】(1)根据题意,可知点的坐标为,即可求出的值,即可求出该圆的方程;(2)由题易知,直线的斜率存在且不为0,设的方程为,与抛物线联立方程组,根