收藏 分享(赏)

2023届河南省新乡市辉县市第一高级中学高三下学期一模考试数学试题(含解析).doc

上传人:g****t 文档编号:15549 上传时间:2023-01-06 格式:DOC 页数:21 大小:2.20MB
下载 相关 举报
2023届河南省新乡市辉县市第一高级中学高三下学期一模考试数学试题(含解析).doc_第1页
第1页 / 共21页
2023届河南省新乡市辉县市第一高级中学高三下学期一模考试数学试题(含解析).doc_第2页
第2页 / 共21页
2023届河南省新乡市辉县市第一高级中学高三下学期一模考试数学试题(含解析).doc_第3页
第3页 / 共21页
2023届河南省新乡市辉县市第一高级中学高三下学期一模考试数学试题(含解析).doc_第4页
第4页 / 共21页
2023届河南省新乡市辉县市第一高级中学高三下学期一模考试数学试题(含解析).doc_第5页
第5页 / 共21页
2023届河南省新乡市辉县市第一高级中学高三下学期一模考试数学试题(含解析).doc_第6页
第6页 / 共21页
亲,该文档总共21页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若集合,则ABCD2若集合,则=( )ABCD3已知集合,则( )ABCD4已知函数(e为自然对数

2、底数),若关于x的不等式有且只有一个正整数解,则实数m的最大值为( )ABCD5将函数图象上每一点的横坐标变为原来的2倍,再将图像向左平移个单位长度,得到函数的图象,则函数图象的一个对称中心为( )ABCD6若2m2n1,则( )ABmn1Cln(mn)0D7设,分别是中,所对边的边长,则直线与的位置关系是( )A平行B重合C垂直D相交但不垂直8已知为定义在上的奇函数,且满足当时,则( )ABCD9设过定点的直线与椭圆:交于不同的两点,若原点在以为直径的圆的外部,则直线的斜率的取值范围为( )ABCD10已知曲线且过定点,若且,则的最小值为( ).AB9C5D11给出下列四个命题:若“且”为假

3、命题,则均为假命题;三角形的内角是第一象限角或第二象限角;若命题,则命题,;设集合,则“”是“”的必要条件;其中正确命题的个数是( )ABCD12设点,P为曲线上动点,若点A,P间距离的最小值为,则实数t的值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13曲线在处的切线的斜率为_.14记为等比数列的前n项和,已知,则_.15定义,已知,若恰好有3个零点,则实数的取值范围是_.16若函数在和上均单调递增,则实数的取值范围为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知椭圆:的两个焦点是,在椭圆上,且,为坐标原点,直线与直线平行,且与椭圆交于

4、,两点.连接、与轴交于点,.(1)求椭圆的标准方程;(2)求证:为定值.18(12分)已知在等比数列中,.(1)求数列的通项公式;(2)若,求数列前项的和.19(12分)在直角坐标系中,曲线上的任意一点到直线的距离比点到点的距离小1.(1)求动点的轨迹的方程;(2)若点是圆上一动点,过点作曲线的两条切线,切点分别为,求直线斜率的取值范围.20(12分)已知函数为实数)的图像在点处的切线方程为.(1)求实数的值及函数的单调区间;(2)设函数,证明时, .21(12分)如图,在四棱锥中,底面是边长为2的菱形,.(1)证明:平面平面ABCD;(2)设H在AC上,若,求PH与平面PBC所成角的正弦值.

5、22(10分)已知椭圆:的离心率为,右焦点为抛物线的焦点.(1)求椭圆的标准方程;(2)为坐标原点,过作两条射线,分别交椭圆于、两点,若、斜率之积为,求证:的面积为定值.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】解一元次二次不等式得或,利用集合的交集运算求得.【题目详解】因为或,所以,故选C.【答案点睛】本题考查集合的交运算,属于容易题.2、C【答案解析】求出集合,然后与集合取交集即可【题目详解】由题意,则,故答案为C.【答案点睛】本题考查了分式不等式的解法,考查了集合的交

6、集,考查了计算能力,属于基础题3、B【答案解析】求出集合,利用集合的基本运算即可得到结论.【题目详解】由,得,则集合,所以,.故选:B.【答案点睛】本题主要考查集合的基本运算,利用函数的性质求出集合是解决本题的关键,属于基础题.4、A【答案解析】若不等式有且只有一个正整数解,则的图象在图象的上方只有一个正整数值,利用导数求出的最小值,分别画出与的图象,结合图象可得.【题目详解】解:,设,当时,函数单调递增,当时,函数单调递减,当时,当,函数恒过点,分别画出与的图象,如图所示,若不等式有且只有一个正整数解,则的图象在图象的上方只有一个正整数值,且,即,且,故实数m的最大值为,故选:A【答案点睛】

7、本题考查考查了不等式恒有一正整数解问题,考查了利用导数研究函数的单调性,考查了数形结合思想,考查了数学运算能力.5、D【答案解析】根据函数图象的变换规律可得到解析式,然后将四个选项代入逐一判断即可.【题目详解】解:图象上每一点的横坐标变为原来的2倍,得到再将图像向左平移个单位长度,得到函数的图象,故选:D【答案点睛】考查三角函数图象的变换规律以及其有关性质,基础题.6、B【答案解析】根据指数函数的单调性,结合特殊值进行辨析.【题目详解】若2m2n120,mn0,mn01,故B正确;而当m,n时,检验可得,A、C、D都不正确,故选:B【答案点睛】此题考查根据指数幂的大小关系判断参数的大小,根据参

8、数的大小判定指数幂或对数的大小关系,需要熟练掌握指数函数和对数函数的性质,结合特值法得出选项.7、C【答案解析】试题分析:由已知直线的斜率为,直线的斜率为,又由正弦定理得,故,两直线垂直考点:直线与直线的位置关系8、C【答案解析】由题设条件,可得函数的周期是,再结合函数是奇函数的性质将转化为函数值,即可得到结论.【题目详解】由题意,则函数的周期是,所以,又函数为上的奇函数,且当时,所以,.故选:C.【答案点睛】本题考查函数的周期性,由题设得函数的周期是解答本题的关键,属于基础题.9、D【答案解析】设直线:,由原点在以为直径的圆的外部,可得,联立直线与椭圆方程,结合韦达定理,即可求得答案.【题目

9、详解】显然直线不满足条件,故可设直线:,由,得,解得或,解得,直线的斜率的取值范围为.故选:D.【答案点睛】本题解题关键是掌握椭圆的基础知识和圆锥曲线与直线交点问题时,通常用直线和圆锥曲线联立方程组,通过韦达定理建立起目标的关系式,考查了分析能力和计算能力,属于中档题10、A【答案解析】根据指数型函数所过的定点,确定,再根据条件,利用基本不等式求的最小值.【题目详解】定点为,,当且仅当时等号成立,即时取得最小值.故选:A【答案点睛】本题考查指数型函数的性质,以及基本不等式求最值,意在考查转化与变形,基本计算能力,属于基础题型.11、B【答案解析】利用真假表来判断,考虑内角为,利用特称命题的否定

10、是全称命题判断,利用集合间的包含关系判断.【题目详解】若“且”为假命题,则中至少有一个是假命题,故错误;当内角为时,不是象限角,故错误;由特称命题的否定是全称命题知正确;因为,所以,所以“”是“”的必要条件,故正确.故选:B.【答案点睛】本题考查命题真假的问题,涉及到“且”命题、特称命题的否定、象限角、必要条件等知识,是一道基础题.12、C【答案解析】设,求,作为的函数,其最小值是6,利用导数知识求的最小值【题目详解】设,则,记,易知是增函数,且的值域是,的唯一解,且时,时,即,由题意,而,解得,故选:C【答案点睛】本题考查导数的应用,考查用导数求最值解题时对和的关系的处理是解题关键二、填空题

11、:本题共4小题,每小题5分,共20分。13、【答案解析】求出函数的导数,利用导数的几何意义令,即可求出切线斜率.【题目详解】,即曲线在处的切线的斜率.故答案为:【答案点睛】本题考查了导数的几何意义、导数的运算法则以及基本初等函数的导数,属于基础题.14、【答案解析】设等比数列的公比为,将已知条件等式转化为关系式,求解即可.【题目详解】设等比数列的公比为,.故答案为:.【答案点睛】本题考查等比数列通项的基本量运算,属于基础题.15、【答案解析】根据题意,分类讨论求解,当时,根据指数函数的图象和性质无零点,不合题意;当时,令,得,令 ,得或 ,再分当,两种情况讨论求解.【题目详解】由题意得:当时,

12、在轴上方,且为增函数,无零点,至多有两个零点,不合题意;当时,令,得,令 ,得或 ,如图所示:当时,即时,要有3个零点,则,解得;当时,即时,要有3个零点,则,令,所以在是减函数,又,要使,则须,所以.综上:实数的取值范围是.故答案为:【答案点睛】本题主要考查二次函数,指数函数的图象和分段函数的零点问题,还考查了分类讨论的思想和运算求解的能力,利用导数判断函数单调性,属于中档题.16、【答案解析】化简函数,求出在上的单调递增区间,然后根据在和上均单调递增,列出不等式求解即可【题目详解】由知,当时,在和上单调递增,在和上均单调递增,的取值范围为:故答案为:【答案点睛】本题主要考查了三角函数的图象

13、与性质,关键是根据函数的单调性列出关于m的方程组,属中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【答案解析】(1)根据椭圆的定义可得,将代入椭圆方程,即可求得的值,求得椭圆方程;(2)设直线的方程,代入椭圆方程,求得直线和的方程,求得和的横坐标,表示出,根据韦达定理即可求证为定值.【题目详解】(1)因为,由椭圆的定义得,点在椭圆上,代入椭圆方程,解得,所以的方程为;(2)证明:设,直线的斜率为,设直线的方程为,联立方程组,消去,整理得,所以,直线的直线方程为,令,则,同理,所以:,代入整理得,所以为定值.【答案点睛】本小题主要考查椭圆标准方程的求法,考查直线和椭圆的位置关系,考查椭圆中的定值问题,属于中档题.18、(1)(2)【答案解析】(1)由基本量法,求出公比后可得通项公式;(2)求出,用裂项相消法求和【题目详解】解:(1)设等比数列的公比为又因为,所以解得(舍)或所以,即(2)据(1)求解知,所以所以【答案点睛】本题考查求等比数列的通项公式,考查裂项相消法求和解题方法是基本量法基本量法是解决等差数列和等比数列的基本方法,务必掌握19、(1);(2)【答案解析】(1)设,根据题意可得点的轨迹方程满足的等式,化简即可求得动

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 教辅习题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2