收藏 分享(赏)

2023届海南省昌江县矿区中学高三下学期联合考试数学试题(含解析).doc

上传人:la****1 文档编号:15628 上传时间:2023-01-06 格式:DOC 页数:21 大小:1.92MB
下载 相关 举报
2023届海南省昌江县矿区中学高三下学期联合考试数学试题(含解析).doc_第1页
第1页 / 共21页
2023届海南省昌江县矿区中学高三下学期联合考试数学试题(含解析).doc_第2页
第2页 / 共21页
2023届海南省昌江县矿区中学高三下学期联合考试数学试题(含解析).doc_第3页
第3页 / 共21页
2023届海南省昌江县矿区中学高三下学期联合考试数学试题(含解析).doc_第4页
第4页 / 共21页
2023届海南省昌江县矿区中学高三下学期联合考试数学试题(含解析).doc_第5页
第5页 / 共21页
2023届海南省昌江县矿区中学高三下学期联合考试数学试题(含解析).doc_第6页
第6页 / 共21页
亲,该文档总共21页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知点是抛物线的对称轴与准线的交点,点为抛物线的焦点,点在抛物线上且满足,若取得最大值时,点恰好在以为焦点的椭圆上,则椭圆的离心率为( )ABCD2已知集合,则集合的真子集的个

2、数是( )A8B7C4D33将3个黑球3个白球和1个红球排成一排,各小球除了颜色以外其他属性均相同,则相同颜色的小球不相邻的排法共有( )A14种B15种C16种D18种4设为坐标原点,是以为焦点的抛物线上任意一点,是线段上的点,且,则直线的斜率的最大值为( )A1BCD5某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为,若低于60分的人数是18人,则该班的学生人数是( )A45B50C55D606设复数满足,则( )A1B-1CD7若复数(为虚数单位),则( )ABCD8在各项均为正数的等比数列中,若,则( )AB6C4D59一小商贩准备用元钱在一批发市场购买甲、乙两种

3、小商品,甲每件进价元,乙每件进价元,甲商品每卖出去件可赚元,乙商品每卖出去件可赚元.该商贩若想获取最大收益,则购买甲、乙两种商品的件数应分别为( )A甲件,乙件B甲件,乙件C甲件,乙件D甲件,乙件10已知函数,若时,恒成立,则实数的值为( )ABCD11已知数列的前n项和为,且对于任意,满足,则( )ABCD12给出下列三个命题:“”的否定;在中,“”是“”的充要条件;将函数的图象向左平移个单位长度,得到函数的图象其中假命题的个数是( )A0B1C2D3二、填空题:本题共4小题,每小题5分,共20分。13在数列中,则数列的通项公式_.14有2名老师和3名同学,将他们随机地排成一行,用表示两名老

4、师之间的学生人数,则对应的排法有_种; _;15设实数x,y满足,则点表示的区域面积为_.16若正实数,满足,则的最大值是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,三棱锥中,点,分别为,的中点,且平面平面求证:平面;若,求证:平面平面.18(12分)已知椭圆的左、右焦点分别为直线垂直于轴,垂足为,与抛物线交于不同的两点,且过的直线与椭圆交于两点,设且 .(1)求点的坐标;(2)求的取值范围.19(12分)已知函数.(1)讨论的零点个数;(2)证明:当时,.20(12分)在平面直角坐标系中,设,过点的直线与圆相切,且与抛物线相交于两点(1)当在区间上变动

5、时,求中点的轨迹;(2)设抛物线焦点为,求的周长(用表示),并写出时该周长的具体取值21(12分)已知椭圆,上、下顶点分别是、,上、下焦点分别是、,焦距为,点在椭圆上.(1)求椭圆的方程;(2)若为椭圆上异于、的动点,过作与轴平行的直线,直线与交于点,直线与直线交于点,判断是否为定值,说明理由.22(10分)如图,在正四棱锥中,为上的四等分点,即(1)证明:平面平面;(2)求平面与平面所成锐二面角的余弦值2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】设,利用两点间的距离公式求出

6、的表达式,结合基本不等式的性质求出的最大值时的点坐标,结合椭圆的定义以及椭圆的离心率公式求解即可.【题目详解】设,因为是抛物线的对称轴与准线的交点,点为抛物线的焦点,所以,则,当时,当时,当且仅当时取等号,此时,点在以为焦点的椭圆上,由椭圆的定义得,所以椭圆的离心率,故选B.【答案点睛】本题主要考查椭圆的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:直接求出,从而求出;构造的齐次式,求出;采用离心率的定义以及圆锥曲线的定义来求解2、D【答案解析】转化条件得,利用元素个数为n的集合真子集个数为个即可得解.【题目详解】由题意得,集合的真子集的

7、个数为个.故选:D.【答案点睛】本题考查了集合的化简和运算,考查了集合真子集个数问题,属于基础题.3、D【答案解析】采取分类计数和分步计数相结合的方法,分两种情况具体讨论,一种是黑白依次相间,一种是开始仅有两个相同颜色的排在一起【题目详解】首先将黑球和白球排列好,再插入红球.情况1:黑球和白球按照黑白相间排列(“黑白黑白黑白”或“白黑白黑白黑”),此时将红球插入6个球组成的7个空中即可,因此共有27=14种;情况2:黑球或白球中仅有两个相同颜色的排在一起(“黑白白黑白黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此时红球只能插入两个相同颜色的球之中,共4种.综上所述,共有14+4

8、=18种.故选:D【答案点睛】本题考查排列组合公式的具体应用,插空法的应用,属于基础题4、A【答案解析】设,因为,得到,利用直线的斜率公式,得到,结合基本不等式,即可求解.【题目详解】由题意,抛物线的焦点坐标为,设,因为,即线段的中点,所以,所以直线的斜率,当且仅当,即时等号成立,所以直线的斜率的最大值为1.故选:A.【答案点睛】本题主要考查了抛物线的方程及其应用,直线的斜率公式,以及利用基本不等式求最值的应用,着重考查了推理与运算能力,属于中档试题.5、D【答案解析】根据频率分布直方图中频率小矩形的高组距计算成绩低于60分的频率,再根据样本容量求出班级人数.【题目详解】根据频率分布直方图,得

9、:低于60分的频率是(0.005+0.010)200.30,样本容量(即该班的学生人数)是60(人).故选:D.【答案点睛】本题考查了频率分布直方图的应用问题,也考查了频率的应用问题,属于基础题6、B【答案解析】利用复数的四则运算即可求解.【题目详解】由.故选:B【答案点睛】本题考查了复数的四则运算,需掌握复数的运算法则,属于基础题.7、B【答案解析】根据复数的除法法则计算,由共轭复数的概念写出.【题目详解】,故选:B【答案点睛】本题主要考查了复数的除法计算,共轭复数的概念,属于容易题.8、D【答案解析】由对数运算法则和等比数列的性质计算【题目详解】由题意故选:D【答案点睛】本题考查等比数列的

10、性质,考查对数的运算法则掌握等比数列的性质是解题关键9、D【答案解析】由题意列出约束条件和目标函数,数形结合即可解决.【题目详解】设购买甲、乙两种商品的件数应分别,利润为元,由题意,画出可行域如图所示,显然当经过时,最大.故选:D.【答案点睛】本题考查线性目标函数的线性规划问题,解决此类问题要注意判断,是否是整数,是否是非负数,并准确的画出可行域,本题是一道基础题.10、D【答案解析】通过分析函数与的图象,得到两函数必须有相同的零点,解方程组即得解.【题目详解】如图所示,函数与的图象,因为时,恒成立,于是两函数必须有相同的零点,所以,解得故选:D【答案点睛】本题主要考查函数的图象的综合应用和函

11、数的零点问题,考查不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平.11、D【答案解析】利用数列的递推关系式判断求解数列的通项公式,然后求解数列的和,判断选项的正误即可【题目详解】当时,所以数列从第2项起为等差数列,所以,故选:【答案点睛】本题考查数列的递推关系式的应用、数列求和以及数列的通项公式的求法,考查转化思想以及计算能力,是中档题12、C【答案解析】结合不等式、三角函数的性质,对三个命题逐个分析并判断其真假,即可选出答案.【题目详解】对于命题,因为,所以“”是真命题,故其否定是假命题,即是假命题;对于命题,充分性:中,若,则,由余弦函数的单调性可知,即,即可得到,即充分性成立;

12、必要性:中,若,结合余弦函数的单调性可知,即,可得到,即必要性成立.故命题正确;对于命题,将函数的图象向左平移个单位长度,可得到的图象,即命题是假命题故假命题有.故选:C【答案点睛】本题考查了命题真假的判断,考查了余弦函数单调性的应用,考查了三角函数图象的平移变换,考查了学生的逻辑推理能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】由题意可得,又,数列的奇数项为首项为1,公差为2的等差数列,对分奇数和偶数两种情况,分别求出,从而得到数列的通项公式.【题目详解】解:,得:,又,数列的奇数项为首项为1,公差为2的等差数列,当为奇数时,当为偶数时,则为奇数,数列的

13、通项公式,故答案为:.【答案点睛】本题考查求数列的通项公式,解题关键是由已知递推关系得出,从而确定数列的奇数项成等差数列,求出通项公式后再由已知求出偶数项,要注意结果是分段函数形式14、36 ;1. 【答案解析】的可能取值为0,1,2,3,对应的排法有:.分别求出,由此能求出.【题目详解】解:有2名老师和3名同学,将他们随机地排成一行,用表示两名老师之间的学生人数,则的可能取值为0,1,2,3,对应的排法有:.对应的排法有36种;,故答案为:36;1.【答案点睛】本题考查了排列、组合的应用,离散型随机变量的分布列以及数学期望,属于中档题.15、【答案解析】先画出满足条件的平面区域,求出交点坐标

14、,利用定积分即可求解.【题目详解】画出实数x,y满足表示的平面区域,如图(阴影部分):则阴影部分的面积,故答案为:【答案点睛】本题考查了定积分求曲边梯形的面积,考查了微积分基本定理,属于基础题.16、【答案解析】分析:将题中的式子进行整理,将当做一个整体,之后应用已知两个正数的整式形式和为定值,求分式形式和的最值的问题的求解方法,即可求得结果.详解:,当且仅当等号成立,故答案是.点睛:该题属于应用基本不等式求最值的问题,解决该题的关键是需要对式子进行化简,转化,利用整体思维,最后注意此类问题的求解方法-相乘,即可得结果.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、证明见解析;证明见解析.【答案解析】利用线面平行的判定定理求证即可;为中点,为中点,可得,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 教辅习题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2