收藏 分享(赏)

2023届河北省五个一名校高三下学期第五次调研考试数学试题(含解析).doc

上传人:la****1 文档编号:15660 上传时间:2023-01-06 格式:DOC 页数:21 大小:3.53MB
下载 相关 举报
2023届河北省五个一名校高三下学期第五次调研考试数学试题(含解析).doc_第1页
第1页 / 共21页
2023届河北省五个一名校高三下学期第五次调研考试数学试题(含解析).doc_第2页
第2页 / 共21页
2023届河北省五个一名校高三下学期第五次调研考试数学试题(含解析).doc_第3页
第3页 / 共21页
2023届河北省五个一名校高三下学期第五次调研考试数学试题(含解析).doc_第4页
第4页 / 共21页
2023届河北省五个一名校高三下学期第五次调研考试数学试题(含解析).doc_第5页
第5页 / 共21页
2023届河北省五个一名校高三下学期第五次调研考试数学试题(含解析).doc_第6页
第6页 / 共21页
亲,该文档总共21页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,则的取值范围是()A0,1BC1,2D0,22复数的虚部是 ( )ABCD3( )ABC1D4已知,若则实数的取值范围是( )ABCD5已知是椭圆和双曲线的公共焦点,是它们的-一个公共点,且,设椭圆和双曲线的离心率分别为,则的关系为(

2、 )ABCD6已知中,则( )A1BCD7已知定点,是圆上的任意一点,点关于点的对称点为,线段的垂直平分线与直线相交于点,则点的轨迹是( )A椭圆B双曲线C抛物线D圆8下列函数中既关于直线对称,又在区间上为增函数的是( )A.BCD9由曲线yx2与曲线y2x所围成的平面图形的面积为()A1BCD10正的边长为2,将它沿边上的高翻折,使点与点间的距离为,此时四面体的外接球表面积为( )ABCD11不等式组表示的平面区域为,则( )A,B,C,D,12设是虚数单位,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13如图是某几何体的三视图,俯视图中圆的两条半径长为2且互相垂直,则该

3、几何体的体积为_.14过点,且圆心在直线上的圆的半径为_15若一组样本数据7,9,8,10的平均数为9,则该组样本数据的方差为_.16若实数满足约束条件,设的最大值与最小值分别为,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知数列的前项和为,且满足,各项均为正数的等比数列满足(1)求数列的通项公式;(2)若,求数列的前项和18(12分)如图,在四棱锥中,四边形为正方形,平面,点是棱的中点,.(1)若,证明:平面平面;(2)若三棱锥的体积为,求二面角的余弦值.19(12分)如图,正方形是某城市的一个区域的示意图,阴影部分为街道,各相邻的两红绿灯之间的距离相等

4、,处为红绿灯路口,红绿灯统一设置如下:先直行绿灯30秒,再左转绿灯30秒,然后是红灯1分钟,右转不受红绿灯影响,这样独立的循环运行.小明上学需沿街道从处骑行到处(不考虑处的红绿灯),出发时的两条路线()等可能选择,且总是走最近路线.(1)请问小明上学的路线有多少种不同可能?(2)在保证通过红绿灯路口用时最短的前提下,小明优先直行,求小明骑行途中恰好经过处,且全程不等红绿灯的概率;(3)请你根据每条可能的路线中等红绿灯的次数的均值,为小明设计一条最佳的上学路线,且应尽量避开哪条路线?20(12分)已知各项均不相等的等差数列的前项和为, 且成等比数列.(1)求数列的通项公式;(2)求数列的前项和.

5、21(12分)某动漫影视制作公司长期坚持文化自信,不断挖掘中华优秀传统文化中的动漫题材,创作出一批又一批的优秀动漫影视作品,获得市场和广大观众的一致好评,同时也为公司赢得丰厚的利润.该公司年至年的年利润关于年份代号的统计数据如下表(已知该公司的年利润与年份代号线性相关).年份年份代号年利润(单位:亿元)()求关于的线性回归方程,并预测该公司年(年份代号记为)的年利润;()当统计表中某年年利润的实际值大于由()中线性回归方程计算出该年利润的估计值时,称该年为级利润年,否则称为级利润年.将()中预测的该公司年的年利润视作该年利润的实际值,现从年至年这年中随机抽取年,求恰有年为级利润年的概率.参考公

6、式:,.22(10分)已知椭圆的中心在坐标原点,其短半轴长为,一个焦点坐标为,点在椭圆上,点在直线上的点,且证明:直线与圆相切;求面积的最小值2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】设,可得,构造()22,结合,可得,根据向量减法的模长不等式可得解.【题目详解】设,则,()22|224,所以可得:,配方可得,所以,又 则0,2故选:D【答案点睛】本题考查了向量的运算综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.2、C【答案解析】因为 ,所以的虚部是 ,故

7、选C.3、A【答案解析】利用复数的乘方和除法法则将复数化为一般形式,结合复数的模长公式可求得结果.【题目详解】,因此,.故选:A.【答案点睛】本题考查复数模长的计算,同时也考查了复数的乘方和除法法则的应用,考查计算能力,属于基础题.4、C【答案解析】根据,得到有解,则,得,得到,再根据,有,即,可化为,根据,则的解集包含求解,【题目详解】因为,所以有解,即有解,所以,得,所以,又因为,所以,即,可化为,因为,所以的解集包含,所以或,解得,故选:C【答案点睛】本题主要考查一元二次不等式的解法及集合的关系的应用,还考查了运算求解的能力,属于中档题,5、A【答案解析】设椭圆的半长轴长为,双曲线的半长

8、轴长为,根据椭圆和双曲线的定义得: ,解得,然后在中,由余弦定理得:,化简求解.【题目详解】设椭圆的长半轴长为,双曲线的长半轴长为 ,由椭圆和双曲线的定义得: ,解得,设,在中,由余弦定理得: , 化简得,即.故选:A【答案点睛】本题主要考查椭圆,双曲线的定义和性质以及余弦定理的应用,还考查了运算求解的能力,属于中档题.6、C【答案解析】以为基底,将用基底表示,根据向量数量积的运算律,即可求解.【题目详解】,.故选:C.【答案点睛】本题考查向量的线性运算以及向量的基本定理,考查向量数量积运算,属于中档题.7、B【答案解析】根据线段垂直平分线的性质,结合三角形中位线定理、圆锥曲线和圆的定义进行判

9、断即可.【题目详解】因为线段的垂直平分线与直线相交于点,如下图所示:所以有,而是中点,连接,故,因此当在如下图所示位置时有,所以有,而是中点,连接,故,因此,综上所述:有,所以点的轨迹是双曲线.故选:B【答案点睛】本题考查了双曲线的定义,考查了数学运算能力和推理论证能力,考查了分类讨论思想.8、C【答案解析】根据函数的对称性和单调性的特点,利用排除法,即可得出答案.【题目详解】A中,当时,所以不关于直线对称,则错误;B中,所以在区间上为减函数,则错误;D中,而,则,所以不关于直线对称,则错误;故选:C.【答案点睛】本题考查函数基本性质,根据函数的解析式判断函数的对称性和单调性,属于基础题.9、

10、B【答案解析】首先求得两曲线的交点坐标,据此可确定积分区间,然后利用定积分的几何意义求解面积值即可.【题目详解】联立方程:可得:,结合定积分的几何意义可知曲线yx2与曲线y2x所围成的平面图形的面积为:.本题选择B选项.【答案点睛】本题主要考查定积分的概念与计算,属于中等题.10、D【答案解析】如图所示,设的中点为,的外接圆的圆心为,四面体的外接球的球心为,连接,利用正弦定理可得,利用球心的性质和线面垂直的性质可得四边形为平行四边形,最后利用勾股定理可求外接球的半径,从而可得外接球的表面积.【题目详解】如图所示,设的中点为,外接圆的圆心为,四面体的外接球的球心为,连接,则平面,.因为,故,因为

11、,故.由正弦定理可得,故,又因为,故.因为,故平面,所以,因为平面,平面,故,故,所以四边形为平行四边形,所以,所以,故外接球的半径为,外接球的表面积为.故选:D.【答案点睛】本题考查平面图形的折叠以及三棱锥外接球表面积的计算,还考查正弦定理和余弦定理,折叠问题注意翻折前后的变量与不变量,外接球问题注意先确定外接球的球心的位置,然后把半径放置在可解的直角三角形中来计算,本题有一定的难度.11、D【答案解析】根据题意,分析不等式组的几何意义,可得其表示的平面区域,设,分析的几何意义,可得的最小值,据此分析选项即可得答案.【题目详解】解:根据题意,不等式组其表示的平面区域如图所示,其中 ,设,则,

12、的几何意义为直线在轴上的截距的2倍,由图可得:当过点时,直线在轴上的截距最大,即,当过点原点时,直线在轴上的截距最小,即,故AB错误;设,则的几何意义为点与点连线的斜率,由图可得最大可到无穷大,最小可到无穷小,故C错误,D正确;故选:D.【答案点睛】本题考查本题考查二元一次不等式的性质以及应用,关键是对目标函数几何意义的认识,属于基础题.12、A【答案解析】利用复数的乘法运算可求得结果.【题目详解】由复数的乘法法则得.故选:A.【答案点睛】本题考查复数的乘法运算,考查计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、20【答案解析】由三视图知该几何体是一个圆柱与一个半

13、球的四分之三的组合,利用球体体积公式、圆柱体积公式计算即可.【题目详解】由三视图知,该几何体是由一个半径为2的半球的四分之三和一个底面半径2、高为4的圆柱组合而成,其体积为.故答案为:20.【答案点睛】本题考查三视图以及几何体体积,考查学生空间想象能力以及数学运算能力,是一道容易题.14、【答案解析】根据弦的垂直平分线经过圆心,结合圆心所在直线方程,即可求得圆心坐标.由两点间距离公式,即可得半径.【题目详解】因为圆经过点则直线的斜率为 所以与直线垂直的方程斜率为点的中点坐标为所以由点斜式可得直线垂直平分线的方程为,化简可得而弦的垂直平分线经过圆心,且圆心在直线上,设圆心所以圆心满足解得所以圆心

14、坐标为则圆的半径为 故答案为: 【答案点睛】本题考查了直线垂直时的斜率关系,直线与直线交点的求法,直线与圆的位置关系,圆的半径的求法,属于基础题.15、1【答案解析】根据题意,由平均数公式可得,解得的值,进而由方差公式计算,可得答案【题目详解】根据题意,数据7,9,8,10的平均数为9,则,解得:,则其方差.故答案为:1【答案点睛】本题考平均数、方差的计算,考查运算求解能力,求解时注意求出的值,属于基础题16、【答案解析】画出可行域,平移基准直线到可行域边界位置,由此求得最大值以及最小值,进而求得的比值.【题目详解】画出可行域如下图所示,由图可知,当直线过点时,取得最大值7;过点时,取得最小值2,所以.【答案点睛】本小题主要考查利用线性规划求线性目标函数的最值.这种类

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 教辅习题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2