1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并
2、交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设直线过点,且与圆:相切于点,那么( )AB3CD12从某市的中学生中随机调查了部分男生,获得了他们的身高数据,整理得到如下频率分布直方图:根据频率分布直方图,可知这部分男生的身高的中位数的估计值为ABCD3设m,n为直线,、为平面,则的一个充分条件可以是( )A,B,C,D,4已知,则a,b,c的大小关系为( )ABCD5周易是我国古代典籍,用“卦”描述了天地世间万象变化如图是一个八卦图,包含乾、坤、震、巽、坎、离、艮、兑八卦(每一卦由三个爻组成,其中“”表示一个阳爻,“”表示一个阴
3、爻)若从八卦中任取两卦,这两卦的六个爻中恰有两个阳爻的概率为( )ABCD6设集合,若,则( )ABCD7某人2018年的家庭总收人为元,各种用途占比如图中的折线图,年家庭总收入的各种用途占比统计如图中的条形图,已知年的就医费用比年的就医费用增加了元,则该人年的储畜费用为( )A元B元C元D元8如图,在圆锥SO中,AB,CD为底面圆的两条直径,ABCDO,且ABCD,SOOB3,SE.,异面直线SC与OE所成角的正切值为( )ABCD9若复数,其中是虚数单位,则的最大值为( )ABCD10已知点,若点在曲线上运动,则面积的最小值为( )A6B3CD11洛书,古称龟书,是阴阳五行术数之源,在古代
4、传说中有神龟出于洛水,其甲壳上心有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数如图,若从四个阴数和五个阳数中分别随机选取1个数,则其和等于11的概率是( )ABCD12已知数列的前n项和为,且对于任意,满足,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在中,角,的对边分别为,.若;且,则周长的范围为_.14已知函数若关于的不等式的解集是,则的值为_15已知椭圆的左右焦点分别为,过且斜率为的直线交椭圆于,若三角形的面积等于,则该椭圆的离心率为_.16如图是一个几何体的三视图,若它的体积是,则_ ,该几何体的表面积为 _三、
5、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)根据国家统计局数据,1978年至2018年我国GDP总量从0.37万亿元跃升至90万亿元,实际增长了242倍多,综合国力大幅提升.将年份1978,1988,1998,2008,2018分别用1,2,3,4,5代替,并表示为;表示全国GDP总量,表中,.326.4741.90310209.7614.05(1)根据数据及统计图表,判断与(其中为自然对数的底数)哪一个更适宜作为全国GDP总量关于的回归方程类型?(给出判断即可,不必说明理由),并求出关于的回归方程.(2)使用参考数据,估计2020年的全国GDP总量.线性回归方程中
6、斜率和截距的最小二乘法估计公式分别为:,.参考数据:45678的近似值551484031097298118(12分)在平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,直线极坐标方程为.若直线交曲线于,两点,求线段的长.19(12分)如图,在四棱锥中,底面是直角梯形,是正三角形,是的中点.(1)证明:;(2)求直线与平面所成角的正弦值.20(12分)管道清洁棒是通过在管道内释放清洁剂来清洁管道内壁的工具,现欲用清洁棒清洁一个如图1所示的圆管直角弯头的内壁,其纵截面如图2所示,一根长度为的清洁棒在弯头内恰好处于位置(图中给出的数据是圆管内壁直径大小,).(
7、1)请用角表示清洁棒的长;(2)若想让清洁棒通过该弯头,清洁下一段圆管,求能通过该弯头的清洁棒的最大长度.21(12分)已知点为椭圆上任意一点,直线与圆 交于,两点,点为椭圆的左焦点.(1)求证:直线与椭圆相切;(2)判断是否为定值,并说明理由.22(10分)已知函数.(1)当时,解不等式;(2)当时,不等式恒成立,求实数的取值范围.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】过点的直线与圆:相切于点,可得.因此,即可得出.【题目详解】由圆:配方为,半径.过点的直线与圆:相切
8、于点,;故选:B.【答案点睛】本小题主要考查向量数量积的计算,考查圆的方程,属于基础题.2、C【答案解析】由题可得,解得,则,所以这部分男生的身高的中位数的估计值为,故选C3、B【答案解析】根据线面垂直的判断方法对选项逐一分析,由此确定正确选项.【题目详解】对于A选项,当,时,由于不在平面内,故无法得出.对于B选项,由于,所以.故B选项正确.对于C选项,当,时,可能含于平面,故无法得出.对于D选项,当,时,无法得出.综上所述,的一个充分条件是“,”故选:B【答案点睛】本小题主要考查线面垂直的判断,考查充分必要条件的理解,属于基础题.4、D【答案解析】与中间值1比较,可用换底公式化为同底数对数,
9、再比较大小【题目详解】,又,即,故选:D.【答案点睛】本题考查幂和对数的大小比较,解题时能化为同底的化为同底数幂比较,或化为同底数对数比较,若是不同类型的数,可借助中间值如0,1等比较5、C【答案解析】分类讨论,仅有一个阳爻的有坎、艮、震三卦,从中取两卦;从仅有两个阳爻的有巽、离、兑三卦中取一个,再取没有阳爻的坤卦,计算满足条件的种数,利用古典概型即得解.【题目详解】由图可知,仅有一个阳爻的有坎、艮、震三卦,从中取两卦满足条件,其种数是;仅有两个阳爻的有巽、离、兑三卦,没有阳爻的是坤卦,此时取两卦满足条件的种数是,于是所求的概率故选:C【答案点睛】本题考查了古典概型的应用,考查了学生综合分析,
10、分类讨论,数学运算的能力,属于基础题.6、A【答案解析】根据交集的结果可得是集合的元素,代入方程后可求的值,从而可求.【题目详解】依题意可知是集合的元素,即,解得,由,解得.【答案点睛】本题考查集合的交,注意根据交集的结果确定集合中含有的元素,本题属于基础题.7、A【答案解析】根据 2018年的家庭总收人为元,且就医费用占 得到就医费用,再根据年的就医费用比年的就医费用增加了元,得到年的就医费用,然后由年的就医费用占总收人,得到2019年的家庭总收人再根据储畜费用占总收人求解.【题目详解】因为2018年的家庭总收人为元,且就医费用占 所以就医费用因为年的就医费用比年的就医费用增加了元,所以年的
11、就医费用元,而年的就医费用占总收人所以2019年的家庭总收人为而储畜费用占总收人所以储畜费用:故选:A【答案点睛】本题主要考查统计中的折线图和条形图的应用,还考查了建模解模的能力,属于基础题.8、D【答案解析】可过点S作SFOE,交AB于点F,并连接CF,从而可得出CSF(或补角)为异面直线SC与OE所成的角,根据条件即可求出,这样即可得出tanCSF的值.【题目详解】如图,过点S作SFOE,交AB于点F,连接CF,则CSF(或补角)即为异面直线SC与OE所成的角,又OB3,SOOC,SOOC3,;SOOF,SO3,OF1,;OCOF,OC3,OF1,等腰SCF中,.故选:D.【答案点睛】本题
12、考查了异面直线所成角的定义及求法,直角三角形的边角的关系,平行线分线段成比例的定理,考查了计算能力,属于基础题.9、C【答案解析】由复数的几何意义可得表示复数,对应的两点间的距离,由两点间距离公式即可求解.【题目详解】由复数的几何意义可得,复数对应的点为,复数对应的点为,所以,其中,故选C【答案点睛】本题主要考查复数的几何意义,由复数的几何意义,将转化为两复数所对应点的距离求值即可,属于基础题型.10、B【答案解析】求得直线的方程,画出曲线表示的下半圆,结合图象可得位于,结合点到直线的距离公式和两点的距离公式,以及三角形的面积公式,可得所求最小值.【题目详解】解:曲线表示以原点为圆心,1为半径
13、的下半圆(包括两个端点),如图,直线的方程为,可得,由圆与直线的位置关系知在时,到直线距离最短,即为,则的面积的最小值为.故选:B.【答案点睛】本题考查三角形面积最值,解题关键是掌握直线与圆的位置关系,确定半圆上的点到直线距离的最小值,这由数形结合思想易得11、A【答案解析】基本事件总数,利用列举法求出其和等于11包含的基本事件有4个,由此能求出其和等于11的概率【题目详解】解:从四个阴数和五个阳数中分别随机选取1个数,基本事件总数,其和等于11包含的基本事件有:,共4个,其和等于的概率故选:【答案点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,属于基础题12、D【答案解析
14、】利用数列的递推关系式判断求解数列的通项公式,然后求解数列的和,判断选项的正误即可【题目详解】当时,所以数列从第2项起为等差数列,所以,故选:【答案点睛】本题考查数列的递推关系式的应用、数列求和以及数列的通项公式的求法,考查转化思想以及计算能力,是中档题二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】先求角,再用余弦定理找到边的关系,再用基本不等式求的范围即可.【题目详解】解:所以三角形周长故答案为:【答案点睛】考查正余弦定理、基本不等式的应用以及三条线段构成三角形的条件;基础题.14、【答案解析】根据题意可知的两根为,再根据解集的区间端点得出参数的关系,再求解即可.【题目详解】解:因为函数,关于的不等式的解集是 的两根为:和;所以有:且;且;故答案为: