收藏 分享(赏)

2023年小学数学典型应用题解答技巧01290.doc

上传人:sc****y 文档编号:1587458 上传时间:2023-04-21 格式:DOC 页数:11 大小:31.50KB
下载 相关 举报
2023年小学数学典型应用题解答技巧01290.doc_第1页
第1页 / 共11页
2023年小学数学典型应用题解答技巧01290.doc_第2页
第2页 / 共11页
2023年小学数学典型应用题解答技巧01290.doc_第3页
第3页 / 共11页
2023年小学数学典型应用题解答技巧01290.doc_第4页
第4页 / 共11页
2023年小学数学典型应用题解答技巧01290.doc_第5页
第5页 / 共11页
2023年小学数学典型应用题解答技巧01290.doc_第6页
第6页 / 共11页
亲,该文档总共11页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、小学数学典型应用题解答技巧具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。1平均数问题:平均数是等分除法的开展。解题关键:在于确定总数量和与之相对应的总份数。算术平均数:几个不相等的同类量和与之相对应的份数,求平均每份是多少。数量关系式:数量之和数量的个数=算术平均数。加权平均数:两个以上假设干份的平均数,求总平均数是多少。数量关系式局部平均数权数的总和权数的和=加权平均数。差额平均数:是把各个大于或小于标准数的局部之和被总份数均分,求的是标准数与各数相差之和的平均数。数量关系式:大数小数2=小数应得数最大数与各数之差的和总份数=最大数应给数最大数与个数之差的和总份数=最

2、小数应得数。例:一辆汽车以每小时100千米 的速度从甲地开往乙地,又以每小时60千米的速度从乙地开往甲地。求这辆车的平均速度。分析:求汽车的平均速度同样可以利用公式。此题可以把甲地到乙地的路程设为“ 1 ,那么汽车行驶的总路程为“ 2 ,从甲地到乙地的速度为100,所用的时间为,汽车从乙地到甲地速度为60千米 ,所用的时间是,汽车共行的时间为 + = ,汽车的平均速度为2 =75千米2归一问题:相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。根据求“单一量的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。根据球痴单一量之后,解题采用

3、乘法还是除法,归一问题可以分为正归一问题,反归一问题。一次归一问题,用一步运算就能求出“单一量的归一问题。又称“单归一。两次归一问题,用两步运算就能求出“单一量的归一问题。又称“双归一。正归一问题:用等分除法求出“单一量之后,再用乘法计算结果的归一问题。反归一问题:用等分除法求出“单一量之后,再用除法计算结果的归一问题。解题关键:从的一组对应量中用等分除法求出一份的数量单一量,然后以它为标准,根据题目的要求算出结果。数量关系式:单一量份数=总数量正归一总数量单一量=份数反归一例 一个织布工人,在七月份织布4774米 ,照这样计算,织布6930米 ,需要多少天?分析:必须先求出平均每天织布多少米

4、,就是单一量。693 0 477 4 31=45天3归总问题:是单位数量和计量单位数量的个数,以及不同的单位数量或单位数量的个数,通过求总数量求得单位数量的个数或单位数量。特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通。数量关系式:单位数量单位个数另一个单位数量=另一个单位数量单位数量单位个数另一个单位数量=另一个单位数量。例 修一条水渠,原方案每天修800米 ,6天修完。实际4天修完,每天修了多少米?分析:因为要求出每天修的长度,就必须先求出水渠的长度。所以也把这类应用题叫做“归总问题。不同之处是“归一先求出单一量,再求总量,归总问题是先求

5、出总量,再求单一量。80 0 6 4=1200米4和差问题:大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。解题关键:是把大小两个数的和转化成两个大数的和或两个小数的和,然后再求另一个数。解题规律:和差2 =大数大数差=小数和差2=小数和小数=大数例 某加工厂甲班和乙班共有工人94人,因工作需要临时从乙班调46人到甲班工作,这时乙班比甲班人数少12人,求原来甲班和乙班各有多少人?分析:从乙班调46人到甲班,对于总数没有变化,现在把乙数转化成2个乙班,即9 412,由此得到现在的乙班是9 412 2=41人,乙班在调出46人之前应该为41+46=87人,甲班为9 487=7

6、人5和倍问题:两个数的和及它们之间的倍数关系,求两个数各是多少的应用题,叫做和倍问题。解题关键:找准标准数即1倍数一般说来,题中说是“谁的几倍,把谁就确定为标准数。求出倍数和之后,再求出标准的数量是多少。根据另一个数也可能是几个数与标准数的倍数关系,再去求另一个数或几个数的数量。解题规律:和倍数和=标准数标准数倍数=另一个数例:汽车运输场有大小货车115辆,大货车比小货车的5倍多7辆,运输场有大货车和小汽车各有多少辆?分析:大货车比小货车的5倍还多7辆,这7辆也在总数115辆内,为了使总数与5+1倍对应,总车辆数应115-7辆。列式为115-75+1=18辆,18 5+7=97辆6差倍问题:两

7、个数的差,及两个数的倍数关系,求两个数各是多少的应用题。解题规律:两个数的差倍数1=标准数标准数倍数=另一个数。例 甲乙两根绳子,甲绳长63米 ,乙绳长29米,两根绳剪去同样的长度,结果甲所剩的长度是乙绳 长的3倍,甲乙两绳所剩长度各多少米?各减去多少米?分析:两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的3倍,实比乙绳多3-1倍,以乙绳的长度为标准数。列式63-293-1=17米乙绳剩下的长度,17 3=51米甲绳剩下的长度,29-17=12米剪去的长度。7行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。解答这类问题首先要搞清楚速度、时间、路程、方向、

8、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。解题关键及规律:同时同地相背而行:路程=速度和时间。同时相向而行:相遇时间=速度和时间同时同向而行速度慢的在前,快的在后:追及时间=路程速度差。同时同地同向而行速度慢的在后,快的在前:路程=速度差时间。例 甲在乙的后面28千米 ,两人同时同向而行,甲每小时行16千米 ,乙每小时行9千米 ,甲几小时追上乙?分析:甲每小时比乙多行16-9千米,也就是甲每小时可以追近乙16-9千米,这是速度差。甲在乙的后面28千米 追击路程,28千米里包含着几个16-9千米,也就是追击所需要的时间。列式2 8 16-9=4小时8流水问题:一般是研

9、究船在“流水中航行的问题。它是行程问题中比拟特殊的一种类型,它也是一种和差问题。它的特点主要是考虑水速在逆行和顺行中的不同作用。船速:船在静水中航行的速度。水速:水流动的速度。顺水速度:船顺流航行的速度。逆水速度:船逆流航行的速度。顺速=船速水速逆速=船速水速解题关键:因为顺流速度是船速与水速的和,逆流速度是船速与水速的差,所以流水问题当作和差问题解答。解题时要以水流为线索。解题规律:船行速度=顺水速度+逆流速度2流水速度=顺流速度逆流速度2路程=顺流速度顺流航行所需时间路程=逆流速度逆流航行所需时间例 一只轮船从甲地开往乙地顺水而行,每小时行28千米,到乙地后,又逆水航行,回到甲地。逆水比顺

10、水多行2小时,水速每小时4千米。求甲乙两地相距多少千米?分析:此题必须先知道顺水的速度和顺水所需要的时间,或者逆水速度和逆水的时间。顺水速度和水流速度,因此不难算出逆水的速度,但顺水所用的时间,逆水所用的时间不知道,只知道顺水比逆水少用2小时,抓住这一点,就可以就能算出顺水从甲地到乙地的所用的时间,这样就能算出甲乙两地的路程。列式为284 2=20千米2 0 2 =40千米40 4 2=5小时28 5=140千米。9复原问题:某未知数,经过一定的四那么运算后所得的结果,求这个未知数的应用题,我们叫做复原问题。解题关键:要弄清每一步变化与未知数的关系。解题规律:从最后结果出发,采用与原题中相反的

11、运算逆运算方法,逐步推导出原数。根据原题的运算顺序列出数量关系,然后采用逆运算的方法计算推导出原数。解答复原问题时注意观察运算的顺序。假设需要先算加减法,后算乘除法时别忘记写括号。例 某小学三年级四个班共有学生168人,如果四班调3人到三班,三班调6人到二班,二班调6人到一班,一班调2人到四班,那么四个班的人数相等,四个班原有学生多少人?分析:当四个班人数相等时,应为168 4,以四班为例,它调给三班3人,又从一班调入2人,所以四班原有的人数减去3再加上2等于平均数。四班原有人数列式为168 4-2+3=43人一班原有人数列式为168 4-6+2=38人;二班原有人数列式为168 4-6+6=

12、42人 三班原有人数列式为168 4-3+6=45人。10植树问题:这类应用题是以“植树为内容。但凡研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按根本公式进行计算。解题规律:沿线段植树棵树=段数+1棵树=总路程株距+1株距=总路程棵树-1总路程=株距棵树-1沿周长植树棵树=总路程株距株距=总路程棵树总路程=株距棵树例 沿公路一旁埋电线杆301根,每相邻的两根的间距是50米。后来全部改装,只埋了201根。求改装后每相邻两根的间距。分析:此题是沿线段埋电线杆,要把电线杆的根数减掉一。

13、列式为50 301-1201-1=75米11盈亏问题:是在等分除法的根底上开展起来的。他的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次缺乏或两次都有余,或两次都缺乏,所余和缺乏的数量,求物品适量和参加分配人数的问题,叫做盈亏问题。解题关键:盈亏问题的解法要点是先求两次分配中分配者没份所得物品数量的差,再求两次分配中各次共分物品的差也称总差额,用前一个差去除后一个差,就得到分配者的数,进而再求得物品数。解题规律:总差额每人差额=人数总差额的求法可以分为以下四种情况:第一次多余,第二次缺乏,总差额=多余+缺乏第一次正好,第二次多余或缺乏,总差额=多余或缺乏第一次多余,第二次也多余,总差额=大多余-小多余第一次缺乏,第二次也缺乏, 总差额=大缺乏-小缺乏例 参加美术小组的同学,每个人分的相同的支数的色笔,如果小组10人,那么多25支,如果小组有12人,色笔多余5支。求每人分得几支?共有多少支色铅笔?分析:每个同学分到的色笔相等。这个活动小组有12人,比10人多2人,而色笔多出了25-5=20支 ,2个人多出20支,一个人分得10支。列式为25-512-10=10支10 12+5=125支。12年龄问题:将差为一定值的两个数作为题中的一个条件,这种应用题被称为“年龄问

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 资格与职业考试 > 其它

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2