1、2023学年高考数学模拟测试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1框图与程序是解决数学问题的重要手段,实际生活中的一些问题在抽象为数学模型之后,可以制作框图,编写程序,得到解决,例如,
2、为了计算一组数据的方差,设计了如图所示的程序框图,其中输入,则图中空白框中应填入( )A,BC,D,2过抛物线的焦点且与的对称轴垂直的直线与交于,两点,为的准线上的一点,则的面积为( )A1B2C4D83在中,“”是“为钝角三角形”的( )A充分非必要条件B必要非充分条件C充要条件D既不充分也不必要条件4数列满足:,为其前n项和,则( )A0B1C3D45已知某几何体的三视图如图所示,其中正视图与侧视图是全等的直角三角形,则该几何体的各个面中,最大面的面积为( )A2B5CD6圆柱被一平面截去一部分所得几何体的三视图如图所示,则该几何体的体积为( ) ABCD7已知函数,若关于的方程有4个不同
3、的实数根,则实数的取值范围为( )ABCD8ABC中,AB3,AC4,则ABC的面积是( )ABC3D9关于函数,有下列三个结论:是的一个周期;在上单调递增;的值域为.则上述结论中,正确的个数为()ABCD10如图所示的程序框图,当其运行结果为31时,则图中判断框处应填入的是( )ABCD11已知椭圆+=1(ab0)与直线交于A,B两点,焦点F(0,-c),其中c为半焦距,若ABF是直角三角形,则该椭圆的离心率为( )ABCD12已知是边长为的正三角形,若,则ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知集合,则_.14已知满足且目标函数的最大值为7,最小值为1,则_15下图
4、是一个算法的流程图,则输出的x的值为_16在平面直角坐标系中,双曲线的焦距为,若过右焦点且与轴垂直的直线与两条渐近线围成的三角形面积为,则双曲线的离心率为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某企业为了了解该企业工人组装某产品所用时间,对每个工人组装一个该产品的用时作了记录,得到大量统计数据从这些统计数据中随机抽取了个数据作为样本,得到如图所示的茎叶图(单位:分钟)若用时不超过(分钟),则称这个工人为优秀员工(1)求这个样本数据的中位数和众数;(2)以这个样本数据中优秀员工的频率作为概率,任意调查名工人,求被调查的名工人中优秀员工的数量分布列和数学期望
5、18(12分)已知,且(1)请给出的一组值,使得成立;(2)证明不等式恒成立19(12分)已知数列是各项均为正数的等比数列,数列为等差数列,且,.(1)求数列与的通项公式;(2)求数列的前项和;(3)设为数列的前项和,若对于任意,有,求实数的值.20(12分)已知函数.(1)讨论的单调性;(2)若恒成立,求实数的取值范围.21(12分)设抛物线的焦点为,准线为,为抛物线过焦点的弦,已知以为直径的圆与相切于点.(1)求的值及圆的方程;(2)设为上任意一点,过点作的切线,切点为,证明:.22(10分)班主任为了对本班学生的考试成绩进行分析,决定从本班24名女同学,18名男同学中随机抽取一个容量为7
6、的样本进行分析.(1)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)(2)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如下表:学生序号1234567数学成绩60657075858790物理成绩70778085908693若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为,求的分布列和数学期望;根据上表数据,求物理成绩关于数学成绩的线性回归方程(系数精确到0.01);若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?附:线性回归方程,其中,.76838125262023学年模拟
7、测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】依题意问题是,然后按直到型验证即可.【题目详解】根据题意为了计算7个数的方差,即输出的,观察程序框图可知,应填入,故选:A.【答案点睛】本题考查算法与程序框图,考查推理论证能力以及转化与化归思想,属于基础题.2、C【答案解析】设抛物线的解析式,得焦点为,对称轴为轴,准线为,这样可设点坐标为,代入抛物线方程可求得,而到直线的距离为,从而可求得三角形面积【题目详解】设抛物线的解析式,则焦点为,对称轴为轴,准线为,直线经过抛物线的焦点,是与的交点,又轴,
8、可设点坐标为,代入,解得,又点在准线上,设过点的的垂线与交于点,.故应选C.【答案点睛】本题考查抛物线的性质,解题时只要设出抛物线的标准方程,就能得出点坐标,从而求得参数的值本题难度一般3、C【答案解析】分析:从两个方向去判断,先看能推出三角形的形状是锐角三角形,而非钝角三角形,从而得到充分性不成立,再看当三角形是钝角三角形时,也推不出成立,从而必要性也不满足,从而选出正确的结果.详解:由题意可得,在中,因为,所以,因为,所以,结合三角形内角的条件,故A,B同为锐角,因为,所以,即,所以,因此,所以是锐角三角形,不是钝角三角形,所以充分性不满足,反之,若是钝角三角形,也推不出“,故必要性不成立
9、,所以为既不充分也不必要条件,故选D.点睛:该题考查的是有关充分必要条件的判断问题,在解题的过程中,需要用到不等式的等价转化,余弦的和角公式,诱导公式等,需要明确对应此类问题的解题步骤,以及三角形形状对应的特征.4、D【答案解析】用去换中的n,得,相加即可找到数列的周期,再利用计算.【题目详解】由已知,所以,+,得,从而,数列是以6为周期的周期数列,且前6项分别为1,2,1,-1,-2,-1,所以,.故选:D.【答案点睛】本题考查周期数列的应用,在求时,先算出一个周期的和即,再将表示成即可,本题是一道中档题.5、D【答案解析】根据三视图还原出几何体,找到最大面,再求面积.【题目详解】由三视图可
10、知,该几何体是一个三棱锥,如图所示,将其放在一个长方体中,并记为三棱锥.,故最大面的面积为.选D.【答案点睛】本题主要考查三视图的识别,复杂的三视图还原为几何体时,一般借助长方体来实现.6、B【答案解析】三视图对应的几何体为如图所示的几何体,利用割补法可求其体积.【题目详解】根据三视图可得原几何体如图所示,它是一个圆柱截去上面一块几何体,把该几何体补成如下图所示的圆柱,其体积为,故原几何体的体积为. 故选:B.【答案点睛】本题考查三视图以及不规则几何体的体积,复原几何体时注意三视图中的点线关系与几何体中的点、线、面的对应关系,另外,不规则几何体的体积可用割补法来求其体积,本题属于基础题.7、C
11、【答案解析】求导,先求出在单增,在单减,且知设,则方程有4个不同的实数根等价于方程在上有两个不同的实数根,再利用一元二次方程根的分布条件列不等式组求解可得.【题目详解】依题意,令,解得,故当时,当,且,故方程在上有两个不同的实数根,故,解得.故选:C.【答案点睛】本题考查确定函数零点或方程根个数.其方法:(1)构造法:构造函数(易求,可解),转化为确定的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出的图象草图,数形结合求解;(2)定理法:先用零点存在性定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,
12、进而判断函数在该区间上零点的个数.8、A【答案解析】由余弦定理求出角,再由三角形面积公式计算即可.【题目详解】由余弦定理得:,又,所以得,故ABC的面积.故选:A【答案点睛】本题主要考查了余弦定理的应用,三角形的面积公式,考查了学生的运算求解能力.9、B【答案解析】利用三角函数的性质,逐个判断即可求出【题目详解】因为,所以是的一个周期,正确;因为,所以在上不单调递增,错误;因为,所以是偶函数,又是的一个周期,所以可以只考虑时,的值域当时,在上单调递增,所以,的值域为,错误;综上,正确的个数只有一个,故选B【答案点睛】本题主要考查三角函数的性质应用10、C【答案解析】根据程序框图的运行,循环算出
13、当时,结束运行,总结分析即可得出答案.【题目详解】由题可知,程序框图的运行结果为31,当时,;当时,;当时,;当时,;当时,.此时输出.故选:C.【答案点睛】本题考查根据程序框图的循环结构,已知输出结果求条件框,属于基础题.11、A【答案解析】联立直线与椭圆方程求出交点A,B两点,利用平面向量垂直的坐标表示得到关于的关系式,解方程求解即可.【题目详解】联立方程,解方程可得或,不妨设A(0,a),B(-b,0),由题意可知,=0,因为,由平面向量垂直的坐标表示可得, 因为,所以a2-c2=ac,两边同时除以可得,解得e=或(舍去),所以该椭圆的离心率为.故选:A【答案点睛】本题考查椭圆方程及其性
14、质、离心率的求解、平面向量垂直的坐标表示;考查运算求解能力和知识迁移能力;利用平面向量垂直的坐标表示得到关于的关系式是求解本题的关键;属于中档题、常考题型.12、A【答案解析】由可得,因为是边长为的正三角形,所以,故选A二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】根据交集的定义即可写出答案。【题目详解】,故填【答案点睛】本题考查集合的交集,需熟练掌握集合交集的定义,属于基础题。14、-2【答案解析】先根据约束条件画出可行域,再利用几何意义求最值,表示直线在轴上的截距,只需求出可行域直线在轴上的截距最大最小值时所在的顶点即可【题目详解】由题意得:目标函数在点B取得最大值为7,在点A处取得最小值为1,直线AB的方程是:,则,故答案为.【答案