1、2023学年度滕州东南协作区第一学期九年级期中诊断性测评数学试卷一、选择题每题3分,共36分以下各小题都给出了四个选项,其中只有一项为哪一项符合题目要求的。注意可以用各种不同的方法来解决你面前的选择题哦!1以下条件中不能判定两个三角形全等的是A三条边对应相等 B有两条边和它们的夹角对应相等C两个角和一条边对应相等 D两边和一个角对应相等2在ABC中,AB=AC,如果一个内角为40,那么B的度数为A40 B70 C40或70D1003假设关于的一元二次方程的常数项是0,那么为A2 B2 C2 D104如果关于的一元二次方程的一个根为1,那么方程的另一根为A1 B2 C3 D25以下各数中,可以用
2、来证明命题“任何偶数都是8的整数倍是假命题的反例是A32 B16 C8 D46到ABC的三个顶点距离相等的点是ABC的A三条中线的交点 B三条角平分线的交点C三条高线的交点 D三条边的垂直平分线的交点7以下命题中错误的选项是A两条对角线相互平分的四边形是平行四边形B邻边相等的平行四边形是菱形C对角线相等的四边形是矩形D对角线相等的梯形是等腰梯形8以下命题中,其逆命题为真命题的是A直角都相等 B面积相等的两个三角形全等C等边三角形是锐角三角形 D假设,那么9在RtABC中,C=90,BD平分ABC,交AC于D,沿DE所在的直线折叠,使点B恰好与点A重合。假设CD=3,那么AB的值为A BCD10
3、假设顺次连接四边形各边中点所得到四边形是矩形,那么原四边形一定是A等腰梯形 B对角线相等且互相平分的四边形C平行四边形 D对角线互相垂直的四边形11如以以下图,在ABC中,AB=AC,AD平分BAC,DEAB,DFAC,垂足分别是E、F。以下结论:DE=DF;BD=CD;AD上任意一点到AB、AC的距离相等;AD上任意一点到BC两端点的距离相等。其中正确结论的个数有A1个 B2个C3个 D4个12如以以下图,梯形ABCD中,ADBC,AB=CD=AD,AC,BD相交于O点,BCD=60,那么以下结论中:梯形ABCD是轴对称图形;AC平分DCB;BC=2AB;梯形ABCD是中心对称图形。其中不正
4、确结论的个数有A1个 B2个 C3个D4个二、填空题此题共6小题,每题4分,共24分只要求在答题卷相应的位置上填写最后结果。开动你的脑筋,大家都在为你加油啊!13在ABC中,C=90,点D在斜边上,且AD=BD,CD=3cm,那么AB的长是_。14三角形两边长分别为4和6,第三边是方程的解,那么这个三角形的周长是_。15幸福药店的某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,该药店经过连续两次降价,现在售价每盒16元,那么该药品平均每次降价的百分率是_。16将矩形纸片ABCD按如以以下图所示的方式折叠,得到菱形AECF。假设AB=12cm,那么菱形AECF的面积为_。17以以下图是
5、一个包装盒的三视图,那么这个包装盒的体积是_不求近似值。18如以以下图所示,在ABC中,分别以AB、AC、BC为边,在BC的同侧作等边ABD,等边ACE、等边BCF。1四边形DAEF一定是_;2探究以下问题:只填满足的条件,不需证明当ABC满足_条件时,四边形DAEF是矩形;当ABC满足_条件时,四边形DAEF是菱形;当ABC满足_条件时,以D、A、E、F为顶点的四边形不存在。三、解答题19题10分,20题8分,21题7分,22题8分,23题7分,24题8分,25题12分,共计60分解答要写出必要的文字说明、证明过程或演算步骤。如果你觉得有的题目有点困难,那么把自己能写出的解答写出一局部也可以
6、,可不要有题目下面是空白的喔!19我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法。请从以下一元二次方程中任选两个,并选择你认为适当的方法分别解这两个方程要求两题的解法不同。 20关于的一元二次方程。1判断此方程根的情况;2设是关于方程的两个实数根,且,求的值。21某工厂现有80台机器,每台机器平均每天生产384件产品,现准备增加一批同类机器以提高生产总量,在试生产中发现,由于其它生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品问应增加多少台机器,才可以使每天的生产总量到达30976件?22,如以以下图,延长ABC的各边,使得BF=AC,AE=CD=
7、AB,顺次连接D,E,得到DEF为等边三角形。求证:1AEFCDE;2ABC为等边三角形。23如图,在ABC中,BC AC,点D在BC上,且DC=AC,ACB的平分线CF交AD于F,点E是AB的中点,连结EF。1求证:EFBC;2假设四边形BDFE的面积为6,求ABD的面积。24如以以下图,有一路灯杆OP,在灯光下,身高1.6米的小明在点B的影长为3米,小明沿OA所在的直线行走5米到A点,此时,小明的影长AM=5米。求路灯杆OP的高度。25如以以下图1,四边形ABCD是正方形,G是CD边上的一个动点点G与C、D不重合,以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE我们探究以以下图中线段BG、DE的长度关系及所在直线的位置关系:1猜测如图1中线段BG、DE的长度关系及所在直线的位置关系;将图1中的正方形CEFG绕着点C按顺时针或逆时针方向旋转任意角度,得到如图2、如图3情形。请你通过观察、测量等方法判断中得到的结论是否仍然成立,并选取图2证明你的判断。2将原题中正方形改为矩形如以以下图46,且, 。第1题中得到的结论哪些成立,哪些不成立?假设成立,以图5为例简要说明理由。3在第2题图5中,连结DG、BE,且AB=3,BC=2,CE=,CG=1,求 的值。