1、一道越南数学奥赛题的另证、推广与加强黄锦涛 谢涛 叶济宇摘要:本文以一道2023年越南数学奥林匹克竞赛题为背景,给出了这道试题的另一种证法,接着给出了四元推广和加强并进行了证明,最后给出了n元推广和加强.关键词:越南奥赛;推广;证明1試题呈现试题(2023年越南数学奥林匹克竞赛)a,b,c是满足ab+bc+ca=abc的正数,求证:b+ca2+c+ab2+a+bc22.2试题解析文1对这道竞赛题进行了证明,下面给出另外一种证明方法.证明因为(a-b)20,所以(a+b)24ab,a+b4aba+b=41a+1b.同理b+c41b+1c,c+a41c+1a.根据根本不等式可得b+ca2=1a2(
2、b+c)1a241b+1c=41a21b+1c.同理有c+ab241b21c+1a,a+bc241c21a+1b.所以b+ca2+c+ab2+a+bc24(1a21b+1c+1b21c+1a+1c21a+1b).由权方和不等式得1a21b+1c+1b21c+1a+1c21a+1b(1a+1b+1c)22(1a+1b+1c)=12(1a+1b+1c).再由ab+bc+ca=abc得1a+1b+1c=1.所以b+ca2+c+ab2+a+bc2412=2.3试题推广通过观察,可以发现这道题可以推广到四元,相应的题目如下:推广1a,b,c,d是满足abc+abd+acd+bcd=abcd的正数,求证:
3、b+c+da2+c+d+ab2+d+a+bc2+a+b+cd23.证明由均值不等式有ba2+ba2+ab23a,ca2+ca2+ac23a,da2+da2+ad23a;cb2+cb2+bc23b,db2+db2+bd23b,ab2+ab2+ba23b;dc2+dc2+cd23c,ac2+ac2+ca23c,bc2+bc2+cb23c;ad2+ad2+da23d,bd2+bd2+db23d,cd2+cd2+dc23d.将以上十二个式子相加得b+c+da2+c+d+ab2+d+a+bc2+a+b+cd23(1a+1b+1c+1d)=3.评注此题还可以推广到n元(证明方法同上,具体证明留给读者).推
4、广2a1,a2,an(nNx)是满足a1a2an-1+a1an-2an+a2an-1an=a1a2an的正数,求证:a2+ana21+a3+a1a22+a1+an-1a2nn-1.将这道越南竞赛题中的约束条件ab+bc+ca=abc去掉,可得2022年罗马尼亚数学奥林匹克试题:推广3a,b,c是正实数,求证:b+ca2+c+ab2+a+bc22(1a+1b+1c).文2把此题加强为:推广4b+ca2+c+ab2+a+bc222c21a+1b+2a21b+1c+2b21c+1a21a+1b+1c+22a-1b-1c21a+1b+1c.同理去掉四元推广式中的约束条件abc+abd+acd+bcd=
5、abcd有相应题目如下:推广5a,b,c,d是正实数,求证:b+c+da2+c+d+ab2+d+a+bc2+a+b+cd231a+1b+1c+1d.接着可以对其进行加强,得到题目如下:推广6a,b,c,d是正实数,求证:b+c+da2+c+d+ab2+d+a+bc2+a+b+cd233a21b+1c+1d+3b21c+1d+1a+3c21d+1a+1b+3d21a+1b+1c31a+1b+1c+1d+43a-1b-1c-1d231a+1b+1c+1d.证明由根本不等式有b+c+da2=1a2(b+c+d)1a291b+1c+1d=9a21b+1c+1d.同理c+d+ab29b21c+1d+1a
6、,d+a+bc29c21d+1a+1b,a+b+cd29d21a+1b+1c.把上面四式相加得b+c+da2+c+d+ab2+d+a+bc2+a+b+cd233a21b+1c+1d+3b21c+1d+1a+3c21d+1a+1b+3d21a+1b+1c.下证3a21b+1c+1d+3b21c+1d+1a+3c21d+1a+1b+3d21a+1b+1c1a+1b+1c+1d+43a-1b-1c-1d291a+1b+1c+1d.为了计算方便,先证明3a2b+c+d+3b2c+d+a+3c2d+a+b+3d2a+b+ca+b+c+d+4(3a-b-c-d)29(a+b+c+d).因为3a-b-c-d
7、2b+c+d=9a2b+c+d-6a+b+c+d,3b-c-d-a2c+d+a=9b2c+d+a-6b+c+d+a,3c-d-a-b2d+a+b=9c2d+a+b-6c+d+a+b,3d-a-b-c2a+b+c=9d2a+b+c-6d+a+b+c,将上述四个式子相加,得9a2b+c+d+9b2c+d+a+9c2d+a+b+9d2a+b+c=3a-b-c-d2b+c+d+3b-c-d-a2c+d+a+3c-d-a-b2d+a+b+3d-a-b-c2a+b+c+3a+b+c+d.由權方和不等式得3a-b-c-d2b+c+d+3b-c-d-a2c+d+a+3c-d-a-b2d+a+b+3d-a-b-
8、c2a+b+c3a-b-c-d2b+c+d+b+c+d-3a23a+2b+2c+2d=3a-b-c-d21b+c+d+13a+2b+2c+2d3a-b-c-d21+123a+b+c+d=43a-b-c-d23a+b+c+d.所以3a2b+c+d+3b2c+d+a+3c2d+a+b+3d2a+b+ca+b+c+d+43a-b-c-d29a+b+c+d.作变换a1a,b1b,c1c,d1d得3a21b+1c+1d+3b21c+1d+1a+3c21d+1a+1b+3d21a+1b+1c1a+1b+1c+1d+43a-1b-1c-1d291a+1b+1c+1d.故b+c+da2+c+d+ab2+d+a
9、+bc2+a+b+cd 23 3a21b+1c+1d+3b21c+1d+1a+3c21d+1a+1b+3d21a+1b+1c31a+1b+1c+1d+43a-1b-1c-1d231a+1b+1c+1d.注此题还可以对n元推广式进行加强(证明方法同上,具体证明留给读者).推广7a1,a2,an(nNx)是正实数,求证:a2+ana21+a3+a1a22+a1+an-1a2nn-1n-1a211a2+1a3+1an+n-1a221a3+1a4+1a1+n-1a2n1a1+1a2+1an-1n-11a1+1a2+1an+nn-1a1-1a2-1a3-1an2n-11a1+1a2+1an.参考文献:1周瑜芽.巧用均值不等式证明2023年数学奥林匹克不等式题J.中学数学研究,2023(03):49-50.2叶大文,邹守文.假设干国际国内数学奥林匹克不等式问题的加强J.保山师专学报,2023,28(02):61-64.(收稿日期:2023-11-13)