1、 149CHINESE JOURNAL OF CT AND MRI,FEB.2023,Vol.21,No.02 Total No.160【第一作者】李邦凤,女,本科生,主要研究方向:影像组学。E-mail:【通讯作者】彭云,男,医师,主要研究方向:双能CT应用、影像组学。E-mail:论 著The Value of the CT Radiomics Combined with Support Vector Machines in Different Between Incidental Acute and Old vertebral Compression Fractures*LI Bang-
2、feng1,2,FU Yu-ping1,2,GONG Liang-geng1,PENG Yun1,*,LIN Hua-shan3.1.Department of Radiology,The Second Affiliated Hospital of Nanchang University,Nanchang 330006,Jiangxi Province,China2.The Second Clinical College of Medicine,Nanchang University,Nanchang 330006,Jiangxi Province,China3.GE Pharmaceutic
3、al GE Healthcare,Changsha 410000,Hunan Province,ChinaABSTRACTObjective To investigate the value of vertebral texture analysis based on thoracic CT images combined with support vector machine(SVM)machine learning method in identifying acute and old vertebral compression fractures.Methods The data of
4、132 patients with incidental vertebral compression fractures detected on routine chest CT and confirmed by MRI from May 2018 to May 2021 were retrospectively analyzed.163 vertebrae including 98 acute fractures and 65 old were included.The Mazda software was used to extract texture features of each v
5、ertebra in axial and sagittal orientation.Then the IPMS software was used to further dimensionality reduction and model building.The old and acute fractured vertebrae were randomly divided into the training and validation samples according to the ratio of 7:3.For training sample,the T test,Wilcoxon
6、rank sum test and Pearson correlation analysis were performed to screen the texture features in both orientations.SVM models were built based on the selected axial and sagittal parameters respectively.Then the diagnostic value was tested by the validation sample and the receiver operating characteri
7、stic curves(ROC)were obtained.Results For each vertebra,294 features were extracted from sagittal and axial imaging respectively.8 parameters were finally obtained for the sagittal orientation,the AUC of the SVM model was 0.78 and 0.68 for the training and validation sample,respectively;7 parameters
8、 were finally obtained for the axial orientation,the AUC of the SVM model was 0.80 and 0.84 for the training and validation sample,respectively.with higher model efficacy for the axial position than for the sagittal position.The axial model shown higher diagnostic value than sagittal model.Conclusio
9、n Radiomic based on chest CT combined with SVM method can differentiate acute from old vertebral compression fractures,the axial model shown better performance and may provide an auxiliary diagnosis for incidental acute vertebral fractures without a clear history of trauma thus facilitating early tr
10、eatment.Keywords:Radiomics;Vertebral Compression Fracture;Support Vector Machine;Texture Analysis椎体压缩性骨折作为临床常见疾病,可引起患者生活质量下降,与病死率增高紧密相关1,该疾病按骨折时期可分为急性及陈旧性骨折,其中急性骨折具有骨质中断、骨髓水肿的病理表现,骨质结构不稳定,需早期识别并及时治疗以防止继发性骨折,引起二次损伤2。椎体压缩性骨折的大部分病例可经CT多平面重建技术明确诊断,结合外伤史,亦可对急性骨折进行诊断,但对于部分无或仅有轻微外伤史的病例,常规CT难以区别急性及陈旧性骨折。MRI
11、的脂肪抑制序列对骨髓水肿具较高敏感性,通常被认为急性骨折的诊断标准3,但该技术具有采集时间长、费用高及禁忌症多等缺陷。双能CT可通过虚拟去钙技术识别急性压缩性骨折的骨髓水肿从而辅助诊断急性骨折,但对机器要求较高,难以普及推广4。影像组学能够高通量提取代表图像特征的多种定量纹理特征,提供肉眼无法识别的多维度信息,进而评估病变组织与正常组织的同、异质性,结合机器学习方法,即可建立病变判别模型5。研究证实基于CT图像的影像组学特征不仅可反映神经性厌食症患者椎体的骨密度,还可对椎体完整性进行评估6。本研究假设基于CT图像组学特征能够反映骨折椎体的形态变化及密度分布,可能对急性及陈旧性压缩性骨折进行鉴别
12、。鉴于椎体CT成像通常不作为无明确外伤病史患者的首选检查方式,因此本文旨在探讨基于胸部CT图像影像组学支持向量机(support vector machine,SVM)模型在鉴别偶发性急性与陈旧性压缩性骨折中的价值,探究快速、准确判断椎体急性骨折的方法。1 资料与方法1.1 一般资料 回顾性分析南昌大学第二附属医院2018年5月至2021年5月行常规胸部CT检查并于48小时内行胸椎MRI检查证实急性或陈旧性压缩性骨折患者,急性压缩性骨折椎体纳入急性组,陈旧性压缩性骨折椎体纳入陈旧组。排除标准:具有恶性肿瘤病史可能导致骨转移或影像学检查提示骨转移;检查前接受过手术治疗(内固定/骨水泥),影响观察
13、的椎体;引起椎体形态变化病变(包括血管瘤、许莫氏结节)的椎体。1.2 检查方法 胸部CT:CT图像均来自于两台机器(ICT256及Brilliance16,均为飞利浦)。扫描范围自胸廓入口至肺底,管电压120kVP,自动管电流,矩阵均为512*512,CT影像组学结合支持向量机对偶发急性及陈旧性椎体压缩性骨折的鉴别诊断价值*李邦凤1,2 付玉苹1,2 龚良庚1彭 云1,*林华山31.南昌大学第二附属医院影像中心 (江西 南昌 330006)2.南昌大学第二临床医学院 (江西 南昌 330006)3.通用电气药业通用电气医疗 (湖南 长沙 410000)【摘要】目的 探究基于胸部CT图像椎体纹理
14、分析结合支持向量机(SVM)机器学习方法在鉴别急性及陈旧性椎体压缩性骨折的价值。方法 回顾性分析132例2018年5月至2021年5月行常规胸部CT并经MRI证实为椎体压缩性骨折患者的资料,纳入急性骨折椎体98个、陈旧性骨折椎体65个,共163个椎体。采用Mazda软件提取所有椎体轴位与矢状位纹理特征,采用IPMS软件进一步筛选、降维及建模,将新旧骨折椎体按7:3的比例随机分入训练集与验证集。通过T检验、Wilcoxon秩和检验及Pearson相关分析对训练集的纹理特征进行筛选,依次建立轴位及矢状位筛选特征的SVM模型,进一步用验证集验证模型有效性,获得受试者工作特征(ROC)曲线。结果 每个
15、椎体矢状位及轴位分别获得294个特征。矢状位最终获得8个参数,训练集及验证集SVM模型的ROC曲线下面积(AUC)分别为0.78和0.68;轴位最终获得6个参数,训练集及验证集SVM模型的AUC分别为0.80和0.84。轴位模型效能较矢状位更高。结论 胸部CT影像组学特征结合SVM可对急性及陈旧性椎体压缩性骨折进行鉴别,以轴位模型为佳,能够为无明确外伤史的偶发急性椎体骨折提供辅助诊断从而促进早期治疗。【关键词】影像组学 椎体压缩性骨折 支持向量机 纹理分析【中图分类号】R445.3【文献标识码】A【基金项目】国家自然科学基金 (81860316)基于影像学和分子生物学 探究miR-318通过激
16、活Hippo信号通路 调控心肌梗死的机制 DOI:10.3969/j.issn.1672-5131.2023.02.050150中国CT和MRI杂志2023年02月 第21卷 第02期 总第160期每位患者扫描后均重建获得层间距1mm的薄层图像。胸椎MRI:MR扫描均在GE公司1.5T MRI机器(SIGNATM Airtist)进行,采用脊柱专用线圈,扫描序列包括矢状位T1WI、T2WI以及短时反转恢复(short time inversion recovery STIR)序列,以及轴位T2加权序列。图像解读:结合病史,CT及MR图像显示椎体高度塌陷或具有骨折线的认定为骨折椎体,其中MR图像椎体内含T1WI低信号,T2及STIR高信号的区域为骨髓水肿,诊断为急性压缩性骨折,否则诊断为陈旧性骨折。1.3 组学特征提取 将胸部CT轴位薄层图像导入工作站进行多平面重建,获得每位患者的椎体正中矢状位图像,将轴位及矢状位图像以DICOM格式导出,转换为BMP格式。由1名具有3年诊断经验的放射科医师采用Mazda软件对所有胸部CT图像纳入的骨折椎体感兴趣区(ROI)进行勾画。ROI勾画时,急性骨