收藏 分享(赏)

2023学年河北省邯郸市大名县一中高三六校第一次联考数学试卷(含解析).doc

上传人:g****t 文档编号:22733 上传时间:2023-01-06 格式:DOC 页数:22 大小:1.99MB
下载 相关 举报
2023学年河北省邯郸市大名县一中高三六校第一次联考数学试卷(含解析).doc_第1页
第1页 / 共22页
2023学年河北省邯郸市大名县一中高三六校第一次联考数学试卷(含解析).doc_第2页
第2页 / 共22页
2023学年河北省邯郸市大名县一中高三六校第一次联考数学试卷(含解析).doc_第3页
第3页 / 共22页
2023学年河北省邯郸市大名县一中高三六校第一次联考数学试卷(含解析).doc_第4页
第4页 / 共22页
2023学年河北省邯郸市大名县一中高三六校第一次联考数学试卷(含解析).doc_第5页
第5页 / 共22页
2023学年河北省邯郸市大名县一中高三六校第一次联考数学试卷(含解析).doc_第6页
第6页 / 共22页
亲,该文档总共22页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并

2、交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,.若存在,使得成立,则的最大值为( )ABCD2已知直四棱柱的所有棱长相等,则直线与平面所成角的正切值等于( )ABCD3很多关于整数规律的猜想都通俗易懂,吸引了大量的数学家和数学爱好者,有些猜想已经被数学家证明,如“费马大定理”,但大多猜想还未被证明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的内容是:对于每一个正整数,如果它是奇数,则将它乘以再加1;如果它是偶数,则将它除以;如此循环,最终都能够得到.下图为研究“角谷猜想”的一个程序框图.若输入的值为,则输出i的值为(

3、 )ABCD4已知a0,b0,a+b =1,若 =,则的最小值是( )A3B4C5D65某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有A72种B36种C24种D18种6已知函数是奇函数,则的值为( )A10B9C7D17斜率为1的直线l与椭圆相交于A、B两点,则的最大值为A2BCD8已知数列是公比为的等比数列,且,若数列是递增数列,则的取值范围为( )ABCD9设i为数单位,为z的共轭复数,若,则( )ABCD10已知,则的大小关系为( )ABCD11设f(x)是定义在R上

4、的偶函数,且在(0,+)单调递减,则( )ABCD12执行如图所示的程序框图,若输出的,则输入的整数的最大值为( )A7B15C31D63二、填空题:本题共4小题,每小题5分,共20分。13若随机变量的分布列如表所示,则_,_-10114已知实数满约束条件,则的最大值为_.15(5分)如图是一个算法的流程图,若输出的值是,则输入的值为_ 16已知为偶函数,当时,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在三棱柱中,为的中点,且.(1)求证:平面;(2)求锐二面角的余弦值.18(12分)已知函数.(1)证明:当时,;(2)若函数只有一个零点,求正实数的

5、值.19(12分)如图,在直棱柱中,底面为菱形,与相交于点,与相交于点.(1)求证:平面;(2)求直线与平面所成的角的正弦值.20(12分)已知函数(1)当时,求不等式的解集;(2)的图象与两坐标轴的交点分别为,若三角形的面积大于,求参数的取值范围.21(12分)如图,四棱锥中,底面,点在线段上,且.(1)求证:平面;(2)若,求二面角的正弦值.22(10分)小丽在同一城市开的2家店铺各有2名员工.节假日期间的某一天,每名员工休假的概率都是,且是否休假互不影响,若一家店铺的员工全部休假,而另一家无人休假,则调剂1人到该店维持营业,否则该店就停业.(1)求发生调剂现象的概率;(2)设营业店铺数为

6、X,求X的分布列和数学期望.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】由题意可知,由可得出,利用导数可得出函数在区间上单调递增,函数在区间上单调递增,进而可得出,由此可得出,可得出,构造函数,利用导数求出函数在上的最大值即可得解.【题目详解】,由于,则,同理可知,函数的定义域为,对恒成立,所以,函数在区间上单调递增,同理可知,函数在区间上单调递增,则,则,构造函数,其中,则.当时,此时函数单调递增;当时,此时函数单调递减.所以,.故选:C.【答案点睛】本题考查代数式最值的计

7、算,涉及指对同构思想的应用,考查化归与转化思想的应用,有一定的难度.2、D【答案解析】以为坐标原点,所在直线为x轴,所在直线为轴,所在直线为轴,建立空间直角坐标系求解平面的法向量,利用线面角的向量公式即得解.【题目详解】如图所示的直四棱柱,取中点,以为坐标原点,所在直线为x轴,所在直线为轴,所在直线为轴,建立空间直角坐标系设,则,设平面的法向量为,则取,得设直线与平面所成角为,则,直线与平面所成角的正切值等于故选:D【答案点睛】本题考查了向量法求解线面角,考查了学生空间想象,逻辑推理,数学运算的能力,属于中档题.3、B【答案解析】根据程序框图列举出程序的每一步,即可得出输出结果.【题目详解】输

8、入,不成立,是偶数成立,则,;不成立,是偶数不成立,则,;不成立,是偶数成立,则,;不成立,是偶数成立,则,;不成立,是偶数成立,则,;不成立,是偶数成立,则,;成立,跳出循环,输出i的值为.故选:B.【答案点睛】本题考查利用程序框图计算输出结果,考查计算能力,属于基础题.4、C【答案解析】根据题意,将a、b代入,利用基本不等式求出最小值即可.【题目详解】a0,b0,a+b=1,当且仅当时取“”号答案:C【答案点睛】本题考查基本不等式的应用,“1”的应用,利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是首先要判断参数是否为正;二定是其次要看和或积是否为定值(和定

9、积最大,积定和最小);三相等是最后一定要验证等号能否成立,属于基础题.5、B【答案解析】根据条件2名内科医生,每个村一名,3名外科医生和3名护士,平均分成两组,则分1名外科,2名护士和2名外科医生和1名护士,根据排列组合进行计算即可【题目详解】2名内科医生,每个村一名,有2种方法,3名外科医生和3名护士,平均分成两组,要求外科医生和护士都有,则分1名外科,2名护士和2名外科医生和1名护士,若甲村有1外科,2名护士,则有,其余的分到乙村,若甲村有2外科,1名护士,则有,其余的分到乙村,则总共的分配方案为2(9+9)=218=36种,故选:B.【答案点睛】本题主要考查了分组分配问题,解决这类问题的

10、关键是先分组再分配,属于常考题型.6、B【答案解析】根据分段函数表达式,先求得的值,然后结合的奇偶性,求得的值.【题目详解】因为函数是奇函数,所以,.故选:B【答案点睛】本题主要考查分段函数的解析式、分段函数求函数值,考查数形结合思想.意在考查学生的运算能力,分析问题、解决问题的能力.7、C【答案解析】设出直线的方程,代入椭圆方程中消去y,根据判别式大于0求得t的范围,进而利用弦长公式求得|AB|的表达式,利用t的范围求得|AB|的最大值【题目详解】解:设直线l的方程为yx+t,代入y21,消去y得x2+2tx+t210,由题意得(2t)21(t21)0,即t21弦长|AB|4故选:C【答案点

11、睛】本题主要考查了椭圆的应用,直线与椭圆的关系常需要把直线与椭圆方程联立,利用韦达定理,判别式找到解决问题的突破口8、D【答案解析】先根据已知条件求解出的通项公式,然后根据的单调性以及得到满足的不等关系,由此求解出的取值范围.【题目详解】由已知得,则.因为,数列是单调递增数列,所以,则,化简得,所以.故选:D.【答案点睛】本题考查数列通项公式求解以及根据数列单调性求解参数范围,难度一般.已知数列单调性,可根据之间的大小关系分析问题.9、A【答案解析】由复数的除法求出,然后计算【题目详解】,故选:A.【答案点睛】本题考查复数的乘除法运算,考查共轭复数的概念,掌握复数的运算法则是解题关键10、D【

12、答案解析】由指数函数的图像与性质易得最小,利用作差法,结合对数换底公式及基本不等式的性质即可比较和的大小关系,进而得解.【题目详解】根据指数函数的图像与性质可知,由对数函数的图像与性质可知,所以最小;而由对数换底公式化简可得由基本不等式可知,代入上式可得所以,综上可知,故选:D.【答案点睛】本题考查了指数式与对数式的化简变形,对数换底公式及基本不等式的简单应用,作差法比较大小,属于中档题.11、D【答案解析】利用是偶函数化简,结合在区间上的单调性,比较出三者的大小关系.【题目详解】是偶函数,而,因为在上递减,即故选:D【答案点睛】本小题主要考查利用函数的奇偶性和单调性比较大小,属于基础题.12

13、、B【答案解析】试题分析:由程序框图可知:,;,;,;,;,. 第步后输出,此时,则的最大值为15,故选B.考点:程序框图.二、填空题:本题共4小题,每小题5分,共20分。13、 【答案解析】首先求得a的值,然后利用均值的性质计算均值,最后求得的值,由方差的性质计算的值即可.【题目详解】由题意可知,解得(舍去)或.则,则,由方差的计算性质得.【答案点睛】本题主要考查分布列的性质,均值的计算公式,方差的计算公式,方差的性质等知识,意在考查学生的转化能力和计算求解能力.14、8【答案解析】画出可行域和目标函数,根据平移计算得到答案.【题目详解】根据约束条件,画出可行域,图中阴影部分为可行域.又目标

14、函数表示直线在轴上的截距,由图可知当经过点时截距最大,故的最大值为8.故答案为:.【答案点睛】本题考查了线性规划问题,画出图像是解题的关键.15、或【答案解析】依题意,当时,由,即,解得;当时,由,解得或(舍去)综上,得或16、【答案解析】由偶函数的性质直接求解即可【题目详解】.故答案为【答案点睛】本题考查函数的奇偶性,对数函数的运算,考查运算求解能力三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【答案解析】(1)证明后可得平面,从而得,结合已知得线面垂直;(2)以为坐标原点,以为轴,为轴,为建立空间直角坐标系,设,写出各点坐标,求出二面角的面的法向量,由法向量夹角的余弦值得二面角的余弦值

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 考试真题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2