收藏 分享(赏)

2023学年湖南省醴陵二中、四中高三第一次调研测试数学试卷(含解析).doc

上传人:g****t 文档编号:22984 上传时间:2023-01-06 格式:DOC 页数:19 大小:1.84MB
下载 相关 举报
2023学年湖南省醴陵二中、四中高三第一次调研测试数学试卷(含解析).doc_第1页
第1页 / 共19页
2023学年湖南省醴陵二中、四中高三第一次调研测试数学试卷(含解析).doc_第2页
第2页 / 共19页
2023学年湖南省醴陵二中、四中高三第一次调研测试数学试卷(含解析).doc_第3页
第3页 / 共19页
2023学年湖南省醴陵二中、四中高三第一次调研测试数学试卷(含解析).doc_第4页
第4页 / 共19页
2023学年湖南省醴陵二中、四中高三第一次调研测试数学试卷(含解析).doc_第5页
第5页 / 共19页
2023学年湖南省醴陵二中、四中高三第一次调研测试数学试卷(含解析).doc_第6页
第6页 / 共19页
亲,该文档总共19页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1存在点在椭圆上,且点M在第一象限,使得过点M且与椭圆在此点的切线垂直的直线经过点,则椭圆离心率的取值范围是( )ABCD2金庸先生的武侠小说射雕英雄传第12回中有这样一段情节,“洪七公道

2、:肉只五种,但猪羊混咬是一般滋味,獐牛同嚼又是一般滋味,一共有几般变化,我可算不出了”.现有五种不同的肉,任何两种(含两种)以上的肉混合后的滋味都不一样,则混合后可以组成的所有不同的滋味种数为( )A20B24C25D263已知是双曲线的左、右焦点,若点关于双曲线渐近线的对称点满足(为坐标原点),则双曲线的渐近线方程为()ABCD4过抛物线的焦点作直线与抛物线在第一象限交于点A,与准线在第三象限交于点B,过点作准线的垂线,垂足为.若,则( )ABCD5已知函数在上有两个零点,则的取值范围是( )ABCD6正三棱柱中,是的中点,则异面直线与所成的角为( )ABCD7我国古代数学名著九章算术有一问

3、题:“今有鳖臑(bi na),下广五尺,无袤;上袤四尺,无广;高七尺.问积几何?”该几何体的三视图如图所示,则此几何体外接球的表面积为( )A平方尺B平方尺C平方尺D平方尺8在中,则 ( )ABCD9已知为定义在上的奇函数,若当时,(为实数),则关于的不等式的解集是( )ABCD10已知复数z满足,则z的虚部为( )ABiC1D111已知曲线的一条对称轴方程为,曲线向左平移个单位长度,得到曲线的一个对称中心的坐标为,则的最小值是( )ABCD12已知非零向量,满足,则与的夹角为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在数列中,则数列的通项公式_.14九章算术卷5商功记

4、载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺,术曰:周自相乘,以高乘之,十二而一”,这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一”,就是说:圆堡瑽(圆柱体)的体积为(底面圆的周长的平方高),则由此可推得圆周率的取值为_.15甲、乙、丙、丁四名同学报名参加淮南文明城市创建志愿服务活动,服务活动共有“走进社区”、“环境监测”、“爱心义演”、“交通宣传”等四个项目,每人限报其中一项,记事件为“4名同学所报项目各不相同”,事件为“只有甲同学一人报走进社区项目”,则的值为_.16已知函数,若对于任意正实数,均存在以为三边边长的三角形,则实数k的

5、取值范围是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知各项均不相等的等差数列的前项和为, 且成等比数列.(1)求数列的通项公式;(2)求数列的前项和.18(12分)设函数(1)当时,求不等式的解集;(2)当时,求实数的取值范围19(12分)已知函数f(x)=ex-x2 -kx(其中e为自然对数的底,k为常数)有一个极大值点和一个极小值点(1)求实数k的取值范围;(2)证明:f(x)的极大值不小于120(12分)记抛物线的焦点为,点在抛物线上,且直线的斜率为1,当直线过点时,.(1)求抛物线的方程;(2)若,直线与交于点,求直线的斜率.21(12分)已知数

6、列和,前项和为,且,是各项均为正数的等比数列,且,(1)求数列和的通项公式;(2)求数列的前项和22(10分)在平面直角坐标系中,曲线的参数方程为(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,直线的极坐标方程为.(1)求曲线的普通方程及直线的直角坐标方程;(2)求曲线上的点到直线的距离的最大值与最小值.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】根据题意利用垂直直线斜率间的关系建立不等式再求解即可.【题目详解】因为过点M椭圆的切线方程为,所以切线的斜率为,由,

7、解得,即,所以,所以.故选:D【答案点睛】本题主要考查了建立不等式求解椭圆离心率的问题,属于基础题.2、D【答案解析】利用组合的意义可得混合后所有不同的滋味种数为,再利用组合数的计算公式可得所求的种数.【题目详解】混合后可以组成的所有不同的滋味种数为(种),故选:D.【答案点睛】本题考查组合的应用,此类问题注意实际问题的合理转化,本题属于容易题.3、B【答案解析】先利用对称得,根据可得,由几何性质可得,即,从而解得渐近线方程.【题目详解】如图所示:由对称性可得:为的中点,且,所以,因为,所以,故而由几何性质可得,即,故渐近线方程为,故选B.【答案点睛】本题考查了点关于直线对称点的知识,考查了双

8、曲线渐近线方程,由题意得出是解题的关键,属于中档题.4、C【答案解析】需结合抛物线第一定义和图形,得为等腰三角形,设准线与轴的交点为,过点作,再由三角函数定义和几何关系分别表示转化出,结合比值与正切二倍角公式化简即可【题目详解】如图,设准线与轴的交点为,过点作.由抛物线定义知,所以,所以.故选:C【答案点睛】本题考查抛物线的几何性质,三角函数的性质,数形结合思想,转化与化归思想,属于中档题5、C【答案解析】对函数求导,对a分类讨论,分别求得函数的单调性及极值,结合端点处的函数值进行判断求解.【题目详解】 ,.当时,在上单调递增,不合题意.当时,在上单调递减,也不合题意.当时,则时,在上单调递减

9、,时,在上单调递增,又,所以在上有两个零点,只需即可,解得.综上,的取值范围是.故选C.【答案点睛】本题考查了利用导数解决函数零点的问题,考查了函数的单调性及极值问题,属于中档题6、C【答案解析】取中点,连接,根据正棱柱的结构性质,得出/,则即为异面直线与所成角,求出,即可得出结果.【题目详解】解:如图,取中点,连接,由于正三棱柱,则底面,而底面,所以,由正三棱柱的性质可知,为等边三角形,所以,且,所以平面,而平面,则,则/,即为异面直线与所成角,设,则,则,.故选:C.【答案点睛】本题考查通过几何法求异面直线的夹角,考查计算能力.7、A【答案解析】根据三视图得出原几何体的立体图是一个三棱锥,

10、将三棱锥补充成一个长方体,此长方体的外接球就是该三棱锥的外接球,由球的表面积公式计算可得选项.【题目详解】由三视图可得,该几何体是一个如图所示的三棱锥,为三棱锥外接球的球心,此三棱锥的外接球也是此三棱锥所在的长方体的外接球,所以为的中点, 设球半径为,则,所以外接球的表面积,故选:A【答案点睛】本题考查求几何体的外接球的表面积,关键在于由几何体的三视图得出几何体的立体图,找出外接球的球心位置和半径,属于中档题.8、A【答案解析】先根据得到为的重心,从而,故可得,利用可得,故可计算的值【题目详解】因为所以为的重心,所以,所以,所以,因为,所以,故选A【答案点睛】对于,一般地,如果为的重心,那么,

11、反之,如果为平面上一点,且满足,那么为的重心9、A【答案解析】先根据奇函数求出m的值,然后结合单调性求解不等式.【题目详解】据题意,得,得,所以当时,.分析知,函数在上为增函数.又,所以.又,所以,所以,故选A.【答案点睛】本题主要考查函数的性质应用,侧重考查数学抽象和数学运算的核心素养.10、C【答案解析】利用复数的四则运算可得,即可得答案.【题目详解】,复数的虚部为.故选:C.【答案点睛】本题考查复数的四则运算、虚部概念,考查运算求解能力,属于基础题.11、C【答案解析】在对称轴处取得最值有,结合,可得,易得曲线的解析式为,结合其对称中心为可得即可得到的最小值.【题目详解】直线是曲线的一条

12、对称轴.,又.平移后曲线为.曲线的一个对称中心为.,注意到故的最小值为.故选:C.【答案点睛】本题考查余弦型函数性质的应用,涉及到函数的平移、函数的对称性,考查学生数形结合、数学运算的能力,是一道中档题.12、B【答案解析】由平面向量垂直的数量积关系化简,即可由平面向量数量积定义求得与的夹角.【题目详解】根据平面向量数量积的垂直关系可得,所以,即,由平面向量数量积定义可得,所以,而,即与的夹角为.故选:B【答案点睛】本题考查了平面向量数量积的运算,平面向量夹角的求法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】由题意可得,又,数列的奇数项为首项为1,公差为2的

13、等差数列,对分奇数和偶数两种情况,分别求出,从而得到数列的通项公式.【题目详解】解:,得:,又,数列的奇数项为首项为1,公差为2的等差数列,当为奇数时,当为偶数时,则为奇数,数列的通项公式,故答案为:.【答案点睛】本题考查求数列的通项公式,解题关键是由已知递推关系得出,从而确定数列的奇数项成等差数列,求出通项公式后再由已知求出偶数项,要注意结果是分段函数形式14、3【答案解析】根据圆堡瑽(圆柱体)的体积为(底面圆的周长的平方高),可得,进而可求出的值【题目详解】解:设圆柱底面圆的半径为,圆柱的高为,由题意知,解得.故答案为:3.【答案点睛】本题主要考查了圆柱的体积公式.只要能看懂题目意思,结合

14、方程的思想即可求出结果.15、【答案解析】根据条件概率的求法,分别求得,再代入条件概率公式求解.【题目详解】根据题意得所以故答案为:【答案点睛】本题主要考查条件概率的求法,还考查了理解辨析的能力,属于基础题.16、【答案解析】根据三角形三边关系可知对任意的恒成立,将的解析式用分离常数法变形,由均值不等式可得分母的取值范围,则整个式子的取值范围由的符号决定,故分为三类讨论,根据函数的单调性求出函数值域,再讨论,转化为的最小值与的最大值的不等式,进而求出的取值范围.【题目详解】因为对任意正实数,都存在以为三边长的三角形,故对任意的恒成立,令,则,当,即时,该函数在上单调递减,则;当,即时,当,即时,该函数在上单调递增,则,所以,当时,因为,所以,解得;当时,满足条件;当时,且,所以,解得,综上,故答案为:【答案点睛】本题考

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 考试真题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2