收藏 分享(赏)

背景为各向异性的含裂缝岩石频散和衰减计算方法研究_徐登辉.pdf

上传人:哎呦****中 文档编号:2391105 上传时间:2023-05-23 格式:PDF 页数:16 大小:1.18MB
下载 相关 举报
背景为各向异性的含裂缝岩石频散和衰减计算方法研究_徐登辉.pdf_第1页
第1页 / 共16页
背景为各向异性的含裂缝岩石频散和衰减计算方法研究_徐登辉.pdf_第2页
第2页 / 共16页
背景为各向异性的含裂缝岩石频散和衰减计算方法研究_徐登辉.pdf_第3页
第3页 / 共16页
亲,该文档总共16页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、第 卷 第期 年月地球物理学报 ,徐登辉,韩同城,符力耘 背景为各向异性的含裂缝岩石频散和衰减计算方法研究地球物理学报,():,:,.(),():,:背景为各向异性的含裂缝岩石频散和衰减计算方法研究徐登辉,韩同城,符力耘,中国石油大学(华东)地球科学与技术学院,山东青岛 青岛海洋科学与技术试点国家实验室海洋矿产资源评价与探测技术功能实验室,山东青岛 摘要裂缝广泛分布于各类储层岩石中,并且会显著提高储层的渗流能力因此,裂缝的评价和表征对于提高油气产能具有重要意义由于裂缝与背景介质之间的波致流会显著影响地震波的频散和衰减特性,所以地震勘探是评价裂缝性储层的有效手段 裂缝地震定量表征的前提是要基于含

2、裂缝岩石中波致流对频散和衰减的影响建立含裂缝岩石物理特性与地震性质的关系 然而,目前相关的理论研究大部分基于各向同性背景这一假设,难以有效应用于常见的各向异性储层 本文针对背景为各向异性的含裂缝岩石提出了频散和衰减的计算方法 该方法首先将含裂缝岩石中的各向异性背景介质等效为层状背景介质;然后,通过分析不同频率下层状含裂缝岩石中的流体压力分布,理论计算了两个特定的中间频率并求解得到两个中间频率下的弹性参数;进一步,以计算得到的两个特定中间频率以及高低频极限下的弹性参数为基础,应用数值方法求解得到弛豫函数中的未知参数,最终实现了背景为各向异性含裂缝岩石中频散和衰减的理论模拟 通过将理论预测结果与实

3、验测量和数值模拟结果进行对比,验证了该方法在背景为各向异性含不同分布裂缝岩石中的有效性 本文提出的方法考虑了常见的各向异性背景对含裂缝岩石频散和衰减的影响,因而在裂缝性储层的地震勘探中具有广泛的应用前景关键词裂缝;频散;衰减;各向异性背景 :中图分类号 收稿日期 ,收修定稿基金项目国家自然科学基金(,)和山东省杰出青年科学基金()资助第一作者简介徐登辉,男,年生,博士研究生,主要从事岩石物理声学性质研究 :通讯作者韩同城,男,年生,教授,博士生导师,主要从事岩石物理学、岩石声电联合性质、岩石和沉积物的物理性质研究 :,(),地 球 物 理 学 报()卷 ,;引言裂缝普遍存在于各类岩石并在油气的

4、聚集和运移过程 中 发 挥 着 重 要 作 用(,;,;,;,)因此,裂缝表征是目前地球物理研究中的重点和热点问题之一 由于裂缝与背景岩石之间的波致流会 显 著影 响声 波 的 频 散 和 衰 减(,;,;,;,;时磊等,;朱伟等,),所以以声波作为媒介的地震勘探可有效进行裂缝性油气层的表征和评价 基于裂缝对地震波频散和衰减的影响,地震勘探不仅能定性的感知裂缝及其连通性(,),而且可以定量评价含裂缝岩石中裂缝的含量与分布(,;,;,)然而,裂缝性油气藏地震定量评价的前提和基础是对含裂缝岩石物理特性与地震性质之间内在的联系进行深入研究为了建立含裂缝岩石的物理特性与其频散和衰减的关系,许多学者理论

5、考察了裂缝与背景岩石之间的波致流及其对 随 频率 变化 地 震 性 质 的 影 响(,;,;,;,;,;,;李闯等,;龙腾等,;欧阳芳等,)然而,目前的理论研究大部分基于各向同性背景这一假设,而地层岩石在经历沉积、压实和成岩作用以后通常具有典型的各向异性特征,这种各向异性会通过两种方式显著影响地层岩石频散和衰减的测量结果:改变岩石弹性模量以影响声速的绝对值;诱发局部流体流动以影响声速的频率依赖性 因此,鉴于各向异性背景在岩石中的广泛分布及其对衰减和频散的显著影响,而且目前常用的含裂缝模型没有考虑各向异性背景的影响,应该针对背景为各向异性的含裂缝岩石提出频散和衰减的理论计算方法本文旨在建立一种背

6、景为各向异性的含裂缝岩石频散和衰减的理论计算方法 该方法首先通过将各向异性背景等效为层状介质,实现不同中间频率下两组弹性参数的理论计算进一步,结合含裂缝岩石高低频极限的弹性参数,应用数值算法求解各向异性背景下的弛豫函数,最终实现目标岩石的频散和衰减的模拟 基于理论计算方法,通过将理论预测结果与实验测量的声速以及数值计算的频散和衰减进行对比验证了该方法的有效性背景为各向异性的含裂缝岩石频散和衰减计算方法当地震波经过饱含流体的含裂缝岩石时,裂缝期徐登辉等:背景为各向异性的含裂缝岩石频散和衰减计算方法研究与背景介质之间弹性性质的差异会引发两个区域间的流体流动 这种裂缝与背景介质孔隙之间的波致流()会

7、显著影响含裂缝岩石中的频散和衰减 前人研究表明,受 影响时,含裂缝岩石随频率变化的弹性参数可以应用高低频极限下的弹性参数以及弛豫函数来计算(,),计算公式为:()()(),()式中,和 分别为含裂缝岩石高低频极限下的弹性参数,与干燥背景介质的弹性参数、孔隙度和裂缝形状与分布、裂缝密度及纵横比有关,可以根据含不同分布裂缝岩石的弹性模型(,;,;,;,)以及各向异性 公式计算得到(,;,);()为弛豫函数,表达式为:()().()从公式()、()可以看出,作为公式中仅有的未知参数,只要能够获得参数和,我们就能求解得到含裂缝岩石随频率变化的弹性参数()对于背景为各向同性的含裂缝岩石,参数和由背景介质

8、的体积和剪切模量决定,而与频率无关(,)然而,当背景介质为各向异性时,尚且没有有效的方法来计算参数和 由于两个参数与频率无关,且高低频极限下含裂缝岩石的弹性参数的获取相对容易,我们只需要计算两组特定中间频率下的弹性参数即可求解各向异性背景下的未知参数和 为了得到两组特定中间频率下的弹性参数,我们可以将各向异性背景介质等效成层状介质,因为层之间弹性性质的差异会使层状岩石在不同频率下呈现出不同的流体压力分布,进而可以为求解中间频率下的弹性参数提供基础(,)为了便于读者理解频散和衰减的求解思路,图给出了背景为各向异性介质含裂缝岩石的频散和衰减计算流程 各向异性背景介质的层状等效除了上文提到的计算所必

9、须的背景介质和裂缝的参数(干燥各向异性背景介质的弹性参数、孔隙度以及裂缝分布、裂缝密度和纵横比)之外,为了实现各向异性背景介质的层状等效,我们还需要知道各向异性背景的一些其他参数包括:骨架矿物模量、孔图背景为各向异性介质含裂缝岩石的频散和衰减计算方法示意图 隙纵横比以及水平方向的渗透率 此外,由于层状介质中每一层的流体压力由与孔隙度直接相关的弹性模量决定(,),为了实现中间频率下两种不同的流体压力分布方式并计算两组弹性参数,我们本次将各向异性背景等效为三层状介质并将每一层的孔隙度分别假设为数值不同的、和基于假设的干燥层状背景介质每一层的孔隙度,结合已知的各向异性背景的骨架矿物模量及孔隙纵横比,

10、首先应用等效差分()模型(,)计算干燥状态下每一层的体积模量和剪切模量 然后,假设每一层的体积分数分别为、和,并通过 平均公式(,)利用每一层的模量和体积分数计算得到干燥状态下等效层状背景介质的弹性参数 最后,利用已知的干燥各向异性背景介质的弹性参数(即通过测量声速和密度计算得到的刚度矩阵参数)以及计算得到的干燥等效层状背景介质的弹性参数,通过全局优化函数 反演得到两组参数整体差异最小时对应的、和 反演优化的目标函数设置如下:(,)(),()地 球 物 理 学 报()卷式中,为已知的干燥各向异性背景的弹性参数,包括 、和 ;为计算得到的干燥等效层状背景介质的弹性参数 为了保证反演结果的有效性,

11、每一层的体积分数应满足如下的约束条件:,(),(),()式中,为已知的各向异性背景的孔隙度由于渗透率与不同流体压力分布对应的频率密切相关(,),为了接下来特定中间频率的求解,需要进一步计算等效层状背景中每一层的渗透率 根据 关系式(,;,),每一层的渗透率、和可以用式()计算得到:(),()式中,是可以通过粒度分析获得的各向异性背景的平均粒径,是几何因子 由于是公式()中唯一的未知参数,因此,我们首先根据各向异性背景等效前后水平方向渗透率保持一致的原则,利用等效层状背景每一层的渗透率和体积分数通过式()反演得到未知的几何因子:,()式中,为已知的各向异性背景水平方向的渗透率(即平行于各向同性面

12、方向的渗透率),等号右边为等效层状背景介质平行于层方向的渗透率(,)最终,等效层状背景介质中每一层的渗透率可以通过将反演得到的以及设置的每一层的孔隙度代入公式()中计算得到将各向异性背景介质等效为层状背景介质以后,我们以层状含裂缝岩石为基础进一步求解高低频极限以及介于它们之间两种特定中间频率下的弹性参数 图给出了上述四种频率下饱和层状含裂缝岩石中的流体压力分布 图中,不同的颜色代表不同的流体压力;矩形代表饱和状态下的层,且层、层、层的孔隙度和渗透率依次减小;椭圆代表的随机分布裂缝在层状背景介质中均匀分布,因此层状介质中的每一层都是一种含随机分布裂缝的多孔介质 从图中可以看出,随频率升高,不仅层

13、之间的流体压力从平衡逐渐变为不平衡状态,而且层内也会出现裂缝与背景孔隙流体压力不平衡的情况前人的研究表明(,;,):低频条件下,流体有足够的时间在裂缝性层状岩石中流通,因此此时岩石中的流体压力保持平衡状态;当频率逐渐升高,层之间的弹性性质差异会导致不同层的流体压力差异,且层内的裂缝与背景孔隙之间同样会逐渐产生流体压力梯度,而这种流体压力梯度产生的频率与岩石的渗透率成正比(,;,;杨顶辉和陈小宏,)综合上述分析,结合本文中等效裂缝性层状岩石的性质,在介于高频极限和低频极限的某两个中间频率下,岩石中会出现图 以及图 所示的两种流体压力分布 此外,因为层的渗透率小于层的渗透率,且中间频率和中间频率分

14、别与层和层中裂缝孔隙间存在流体压力差异的情况相对应,所以中间频率小于中间频率 由于岩石随频率变化的弹性参数与其中的流体压力分布密切相关,图所示四种频率下层状含裂缝岩石中的流体压力分布是接下来弹性参数求解的基础值得注意的是,虽然图仅以随机分布裂缝为例给图不同频率下三层状含裂缝岩石流体压力分布示意图()低频极限;()中间频率;()中间频率;()高频极限 图中矩形代表饱和的层,椭圆代表饱和的裂缝,不同的颜色代表不同的流体压力 ();();();(),期徐登辉等:背景为各向异性的含裂缝岩石频散和衰减计算方法研究出了不同频率下的流体压力分布,但是对于含其他分布裂缝的层状岩石,它们在上述四种频率下的流体压

15、力分布与图所示的分布相同 因此,接下来给出的不同频率下的弹性参数计算方法适用于含不同分布裂缝且背景为各向异性的岩石 低频极限下的弹性参数计算方法在低频极限时,饱和含裂缝岩石中的流体在地震波的压缩周期内有足够的时间从裂缝流向背景孔隙,因此整个岩石内的流体压力分布平衡,如图 所示 此时饱和含裂缝岩石的弹性参数可以通过附录 所示的各向异性 公式,利用已知的干燥各向异性背景的弹性参数、孔隙度、骨架矿物的体积模量、饱和流体的体积模量以及裂缝分布、裂缝密度和纵横比计算得到(,)具体计算流程如下:()计算干燥含裂缝岩石的弹性参数干燥含裂缝岩石的弹性参数不仅与背景介质的弹性参数及裂缝的密度、纵横比有关,而且与

16、裂缝的分布直接相关 等()提出了背景为各向异性介质含复杂分布裂缝岩石的弹性性质模型 由于该模型同时考虑了各向异性背景以及复杂分布裂缝(三维倾斜裂缝和随机分布裂缝)对岩石弹性性质的影响,能够很好的契合本文研究的目标岩石,所以本文应用 等()的模型来计算干燥含裂缝岩石的弹性参数,具体计算公式见附录 首先根据岩石中的裂缝分布选择相应的计算公式,利用裂缝密度和裂缝纵横比求解干燥裂缝的柔度矩阵;然后,结合干燥各向异性背景的弹性参数,通过含裂缝岩石的弹性模型即可计算得到干燥含裂缝岩石的弹性参数()求解低频极限下饱和含裂缝岩石的弹性参数通过将上一步求解得到的干燥含裂缝岩石的弹性参数以及已知的含裂缝岩石的总孔隙度(背景孔隙度加上由裂缝密度和裂缝纵横比计算得到的裂缝孔隙度)、骨架矿物的弹性模量和饱和流体的体积模量代入附录 中式()()所示的各向异性 公式中,即可计算得到低频极限下饱和含裂缝岩石的弹性参数(,)此时,各向异性 公式中干燥岩石的弹性参数变为干燥含裂缝岩石的弹性参数,且原公式中的岩石孔隙度需要替换为含裂缝岩石的总孔隙度为了便于理解上述的求解过程,下面进一步给出了低频极限下饱和含随机分布裂缝三层

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 专业资料 > 其它

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2