1、书书书Journal of Engineering Geology工程地质学报10049665/2023/31(2)-0386-11孟令超,朴淼,张鸿秋,等 2023 干湿循环条件下木质素改良膨胀土胀缩特性J 工程地质学报,31(2):386396 doi:1013544/jcnkijeg20220196Meng Lingchao,Piao Miao,Zhang Hongqiu,et al 2023 Swelling and shrinkage behaviour of expansive soil ameliorated by calcium lignosulphonate dur-ing
2、wetting-drying cyclesJ Journal of Engineering Geology,31(2):386396 doi:1013544/jcnkijeg20220196干湿循环条件下木质素改良膨胀土胀缩特性*孟令超朴淼张鸿秋黄志全(华北水利水电大学,郑州 450046,中国)(鹤壁市土地收购储备中心,鹤壁 472000,中国)(洛阳理工学院,洛阳 471023,中国)摘要实地调查发现河南省南阳市南阳盆地周边受持续降雨、干旱极端气候影响,出现了房屋破坏、边坡失稳等膨胀土灾害问题,危害人民财产生命安全。以南阳盆地弱膨胀土为研究对象,通过自由膨胀率试验,研究木质素磺酸钙改良弱膨
3、胀土的最佳掺量问题,并在最佳掺量的基础上对试样进行无荷膨胀和收缩试验,进一步研究干湿循环条件下木质素磺酸钙对弱膨胀土胀缩特性的影响,结合试验过程中试样的裂隙发展规律,探究干湿循环条件木质素磺酸钙改良弱膨胀土胀缩特性的原因。试验结果表明对于弱膨胀土,木质素磺酸钙掺量在 0.75%、养护天数 14 d 时改良效果最佳,此时改良土自由膨胀率最低。干湿循环条件下的无荷膨胀和收缩试验数据显示改良前后弱膨胀土绝对膨胀率最高由 29%降至 3%,绝对收缩率最高由 17%降至 2%,改良土相对膨胀率与相对收缩率基本不随干湿循环次数发生变化,说明木质素磺酸钙可以有效降低干湿循环过程中弱膨胀土的胀缩形变,保持干湿
4、循环过程中弱膨胀土胀缩特性的稳定,且木质素磺酸钙的改良效果不受干湿循环次数的影响。对比未改良土与改良土裂隙发展规律,木质素磺酸钙在弱膨胀土中主要起到抑制裂隙发育,提高土体胶结能力的作用,使土体形成更致密的结构,改善弱膨胀土胀缩特性。关键词弱膨胀土;干湿循环;木质素磺酸钙;改良土;胀缩性;裂隙性中图分类号:TU443文献标识码:Adoi:1013544/jcnkijeg20220196*收稿日期:20220424;修回日期:20220525基金项目:中原科技创新领军人才计划资助(资助号:214200510030)This research is supported by the the Cent
5、ral Plains Science and Technology Innovation Leader Project(Grant No 214200510030)第一作者简介:孟令超(1978),男,博士,副教授,硕士生导师,主要从事工程地质方面的科研与教学工作 E-mail:meng7839126com通讯作者简介:黄志全(1970),男,博士,教授,博士生导师,主要从事边坡工程方面的科研与教学工作 E-mail:huangzhiquanncwueducnSWELLING AND SHINKAGE BEHAVIOU OF EXPANSIVE SOIL AME-LIOATED BY CALC
6、IUM LIGNOSULPHONATE DUING WETTING-DY-ING CYCLESMENG LingchaoPIAO MiaoZHANG HongqiuHUANG Zhiquan(North China University of Water esources and Electric Power,Zhengzhou 450046,China)(Land Acquisition eserve Center in Hebi City,Hebi 472000,China)(Luoyang Institute of Science and Technology,Luoyang 47102
7、3,China)AbstractAccording to a field investigation,expansive soil disasters such as building damage and slope failurehappened in the area of Nanyang Basin in Henan Province as a result of extreme climate conditionpersistent rainsand drought,threatening people s property and lives This paper aims to
8、study the effect of calcium lignosulphonatefor improving the swelling and shrinkage characteristics of weak expansive soil The soil specimens mixed with calci-um lignosulphonate at various percentages(0.5%,0.75%,1%,1.25%)by dry weight,and the free swell testwere performed after specimens cured for 0
9、,3,7,11,14,and 28 days to explore the optimum value of calciumlignosulphonate The laboratory test results indicate that the specimen mixed with 0.75%calcium lignosulphonateand cured for 14 days has the lowest free swelling ratio Based on the optimum values of calcium lignosulphonate(0.75%),unloaded
10、expansion test and shrinkage test were conducted under cyclic drying and wetting conditionThe results show that the addition of calcium lignosulfonate can effectively reduce the absolute expansion rate andthe absolute shrinkage rate of weak expansive soil during the wetting-drying cycle The maximum
11、absolute expansionrate decreases from 29%to 3%,and the maximum absolute shrinkage rate decreases from 17%to 2%The relativeexpansion rate and shrinkage rate of ameliorated soils keep steady with the increase of the wetting-drying cycle,which indicates that calcium lignosulfonate can effectively ameli
12、orate the stability of swelling and shrinkage propertyof weak expansive soil during wetting and drying cycles The increased drying-wetting cycle has no effect on the im-proved effectiveness of calcium lignosulphonate By analyzing the crack development pattern of test specimens,cal-cium lignosulfonat
13、e primarily inhibits crack development,improves soil cementation ability,and causes the soil toform a more compact structure,allowing weak expansive soil to maintain its swelling and shrinkage characteristicsstability during the drying-wetting cycleKey wordsWeak expansive soil;Wetting-drying cycle;C
14、alcium lignosulphonate;Soil stabilization;Swelling-shrinking;Desiccation crack0引言膨胀土含有较多的蒙脱石等亲水性黏土矿物(王保田等,2008),在干湿交替的自然条件下反复吸水膨胀、失水收缩,会给工程建设带来较大的危害(廖世文,1984),例如膨胀土路基路面开裂问题以及南水北调工程中在膨胀土区域开挖沟渠时膨胀土边坡的破坏问题等。传统改良方法一般是用水泥、石灰、粉煤灰等改良剂改良膨胀土。这些传统改良剂可以有效抑制膨胀土的膨胀性并改善膨胀土的力学性能,提高土体抗剪强度和无侧限抗压强度等力学参数(Kumar et al,2
15、007;谭松林等,2009;吴建涛等,2017;商拥辉等,2020;吴燕开等,2021),但传统钙基加固剂如石灰和水泥在生产的过程中会造成一定的环境污染(Gao et al,2015),并且利用钙基加固剂改良含有硫酸盐的土体时,硫酸盐的腐蚀作用会影响最终的改良效果(Nair et al,2011)。因此,很多学者致力于研究新型的、环境友好型的土体改良剂,其中就包含木质素及其衍生物。木质素及其衍生物是生物能源生产过程中的副产物,而生物能源被认为是最高效的清洁能源(姚穆等,2009)。全世界每年生产的工业木质素利用率仅有约 2%,未被利用木质素的乱排滥放带来了较为严重的环境污染和资源浪费问题(魏建
16、华等,2001;路瑶等,2013)。开发利用木质素及其衍生物无论是对于环境保护还是工程建设都具有积极的意义。对于应用木质素及其衍生物改良土体,国内外已有许多学者做了相关的研究。Indraratna et al(2013)利用木质素衍生物改良粉砂土并研究其适用性,结果表明较传统改良剂而言,木质素适用性更广,具有广阔的发展前景;Yang et al(2018)发现含木质素的工业副产物可以改善土壤的冻融耐久性和水分敏感性;贺智强等(2017)研究了木质素对黄土抗压、抗拉强度及水稳定性的影响,认为木质素磺酸钙可以加强土颗粒间的胶结作用并填充孔隙,进而改良土体的工程性质;Sharmila et al(2021)研究了木质素衍生物对膨胀土膨胀特性的影响,试验表明改良后土体的土壤膨胀势和膨胀压力明显降低;张涛等(2016)利用工业副产品木质素改良路基粉土,通过扫描电镜(SEM)、能谱分析(EDS)、X 射线衍射分析等手段分析了木质素改良的微观机理,发现木质素会使土体矿物颗粒双电层厚度减小,并与土体颗粒相互作用形成胶结物填充孔隙,提高土体的致密程度。上述研究表明,木质素及其衍生物可以有效地改良土体,并