1、2023 年第 38 卷 第2期2023,38(2):0709-0719地球物理学进展Progress in Geophysicshttp:/wwwprogeophyscnISSN 1004-2903CN 11-2982/P乔震,廖广志,肖立志,等 2023 零场-超低场核磁共振技术、原理及油气检测方法 地球物理学进展,38(2):0709-0719,doi:10 6038/pg2023GG0222QIAO Zhen,LIAO GuangZhi,XIAO LiZhi,et al2023 Zero-to ultralow-field nuclear magnetic resonance tech
2、nology,principle and oil and gas detectionmethod Progress in Geophysics(in Chinese),38(2):0709-0719,doi:106038/pg2023GG0222零场-超低场核磁共振技术、原理及油气检测方法Zero-to ultralow-field nuclear magnetic resonance technology,principle and oiland gas detection method乔震1,廖广志1*,肖立志1,侯学理2,李楠2,孙哲3,冯泽东3QIAO Zhen1,LIAO Guang
3、Zhi1*,XIAO LiZhi1,HOU XueLi2,LI Nan2,SUN Zhe3,FENG ZeDong3收稿日期2022-06-28;修回日期2022-10-27投稿网址http:/www progeophys cn第一作者简介乔震,男,1997 年生,硕士研究生,主要从事核磁共振测井研究 E-mail:qiaozhen best outlook com*通讯作者廖广志,教授,博士生导师,主要从事核磁共振测井评价研究 E-mail:gzhliao hotmail com1 油气资源与探测国家重点实验室,中国石油大学(北京),北京1022492 中国石油集团测井有限公司,西安7100
4、773 无锡量子感知研究所,无锡2141001 State Key Laboratory of Petroleum esources and Prospecting,China University of Petroleum(Beijing),Beijing 102249,China2 China National Petroleum Corporation Logging,Xi an 710077,China3 Wuxi Institute of Quantum Studies,Wuxi 214100,China摘要近年来,零场-超低场核磁共振在生物成像(脑磁和心磁)以及磁探测(陆地测磁、海
5、洋测磁、航空测磁)等领域发挥了重要的作用 本文首先介绍了零场-超低场核磁共振的物理实现及谱学发展,随着量子磁感技术的发展,零场-超低场核磁共振检测技术逐渐成熟,国内外专家学者已证明零场-超低场核磁共振是一种与传统核磁共振互补的检测方法;然后,简要介绍了基于原子磁力计的零场-超低场核磁共振装置结构及原理,与传统高场核磁共振相比,零场-超低场核磁共振消除了对昂贵超导磁体和永磁体的依赖而优势明显,应用潜力巨大;结合零场-超低场核磁共振的特点及技术优势,本文设计了零场-超低场核磁共振在油气检测应用方面的可行性方案和三组不同种类油(烷烃)、油水两相混合溶液、饱水玻璃珠样品的零场-超低场核磁共振的实验方案
6、 随着零场-超低场核磁共振谱仪的发展,这种技术在井下进行油气探测有希望成为可能,本文提出了采用泵浦光、探测光传播方向和外磁场方向三轴垂直结构在井下进行油气探测的零场-超低场核磁共振谱仪设计方案关键词零场-超低场核磁共振;原子磁力计;J-耦合Abstractrecent years,zero-to ultralow-field nuclearmagnetic resonance has played an important role inbiological imaging(Brain and heart magnetism)andmagneticdetection(terrestrialma
7、gnetometry,oceanmagnetometry,aerial magnetometry),etcThis paperintroducesthephysicalrealizationandspectraldevelopment of zero-to ultralow-field nuclear magneticresonance,with the development of quantum magneticsensing technology,zero-to ultralow-field nuclear magneticresonance detection technology h
8、as gradually matured,experts and scholars at home and abroad have proved thatzero-to ultralow-field nuclear magnetic resonance is adetection method complementary to traditional nuclearmagnetic resonance;Then,we introduce the structure andprinciple of the zero-to ultralow-field nuclear magneticresona
9、nce device based on atomic magnetometers,zero-toultralow-field nuclear magnetic resonance eliminates theneed for expensive superconducting magnets and permanentmagnetscomparedwithtraditionalhigh-fieldnuclearmagnetic resonance,it has obvious advantages and widerange of application potential;In this p
10、aper,we designedthe feasibility scheme of zero-to ultralow-field nuclearmagnetic resonance in oil and gas detection applicationsand zero-to ultralow-field nuclear magnetic resonance ofthree groups of different types of oils(alkanes),oil-watertwo-phase mixed solutions,and water-saturated glass beadss
11、amples experimental program With the development ofzero-toultralow-fieldnuclearmagneticresonancespectrometers,zero-to ultralow-field nuclear magneticresonance detection in downhole will become possible,wepropose a design scheme of a zero-field-ultra-low-field地球物理学进展www progeophys cn2023,38(2)谱;油气检测方
12、法中图分类号P631文献标识码Adoi:10 6038/pg2023GG0222nuclear magnetic resonance spectrometer for downhole oiland gas detection using a three-axis vertical structure ofpump light,probe light propagation direction and externalmagnetic field directionKeywordsZero-toultralow-fieldnuclearmagneticresonance;Atomic magn
13、etometer;J-coupling spectrum;Oiland gas detection method0引言核磁共振(Nuclear Magnetic esonance,NM)由于准确、快速、无损伤等优势广泛应用于生命科学、材料检测等领域(Keeler,2005;Seo et al,2022;Zhu et al,2021)核磁共振按磁场分为高场核磁共振(B 103T)、低场核磁共振(107T B 103T)和零场-超低场核磁共振(B 107T)(Appelt etal,2010)传统的高场核磁共振谱仪具有电磁感应探测方式对低频信号(1000 Hz)不敏感且难以实现谱线绝对分辨率小于
14、100 MHz 的局限性,为此,人们开始探索低磁场下核磁共振检测的可能性 随着新的量子磁传感技术的发展,为核磁共振在低磁场下提供了检测方法,零场-超低场核磁共振探测逐渐成熟 与传统高场核磁共振相比,零场-超低场核磁共振消除了对昂贵超导磁体或永磁体的依赖,具有明显的优势且应用潜力巨大(Tayler et al,2017;Barskiy et al,2019a)零场-超低场核磁共振(Zero-to Ultralow-Field Nuclear Magnetic esonance,ZULFNM)作为核磁共振的一种方法,可定义为塞曼哈密顿量对核自旋的相干演化足够小或忽略不计磁场的状态(Blanchar
15、d and Budker,2016)近年来,零场-超低场核磁共振谱仪快速发展,超 导 量 子 干 涉 仪(SuperconductingQuantumInterference Device,SQUIDs)、原子磁力计(AtomicMagnetometer)以 及 NV 色 心 磁 力 计(Nitrogen-Vacancy Magnetometer)仪器的发明成为了零场-超低场核磁共振的主要物理实现手段(Jiang et al,2021;Ledbetter and Budker,2013)其中原子磁力计具有经济、便携、极高灵敏度等突出优势,成为零场-超低场核磁共振理想检测手段,美国 Ledbet
16、ter 等(2009)基于高灵敏原子磁力计第一次实现零场条件下杂核和同核 J-偶合的磁共振测量,之后国内外专家学者通过观察独特的 J-耦合信息可以识别、表征和量化分子结构,证明零场-超低场核磁共振是一种与传统核磁共振互补的检测方法,在医学、生物、化学等领域具有巨大的应用价值(Blanchard et al,2021;Boto et al,2018;Jensen et al,2016;King etal,2017)二维零场-超低场 J-耦合光谱法、量子控制、零场-超低场核磁共振成像等技术也促进了零场-超低场核磁共振应用的发展(Bian et al,2017;Sjolander et al,2020;SavukovandKaraulanov,2013)本文首先介绍了零场-超低场核磁共振的物理实现及谱学发展;然后,介绍了零场-超低场核磁共振谱仪装置结构及原理,相比于传统高场核磁共振,零场-超低场核磁共振消除了对昂贵超导磁体和永磁体的依赖而优势明显,应用潜力巨大;结合零场-超低场核磁共振的特点及技术优势,本文设计了不同种类油(烷烃)、油水两相混合溶液、饱水玻璃珠样品三组零场-超低场核磁共振的实