1、第 3 期段双明,等:基于改进残差网络的锂离子电池故障诊断参考文献:1 刘洋,程强,史曜炜,等.基于注意力模块及 1D-CNN 的滚动轴承故障诊断J.太阳能学报,2022,43(3):462-468.LIU Y,CHENG Q,SHI Y W,et al.Fault diagnosis of rolling bea-rings based on attention module and 1D-CNNJ.Acta Energiae Solaris Sinica,2022,43(3):462-468.2 刘宇晴,王天昊,徐旭.深度学习神经网络的新型自适应激活函数J.吉林大学学报(理学版),2019
2、,57(4):857-859.LIU Y Q,WANG T H,XU X.New adaptive activation function for deep learning neural networksJ.Journal of Jilin University(Science Edition),2019,57(4):857-859.3 李志军,陈伟根,周湶,等.基于改进深度学习混合网络与小波分析的电机故障诊断方法J.三峡大学学报(自然科学版),2021,43(6):94-99.LI Z J,CHEN W G,ZHOU Q,et al.Motor fault diagnosis method
3、 based on improved deep learning hybrid network and wavelet analy-sisJ.Journal of China Three Gorges University:Natural Sciences,2021,43(6):94-99.4 彭运赛,夏飞,袁博,等.基于改进 CNN 和信息融合的动力电池组故障诊断方法J.汽车工程,2020,42(11):1529-1536.PENG Y S,XIA F,YUAN B,et al.Fault diagnosis of traction bat-tery pack based on improv
4、ed convolution neural network and infor-mation fusionJ.Automotive Engineering,2020,42(11):1529-1536.5 GAO D X,LIN X H.Fault diagnosis method of DC charging points for EVs based on deep belief networkJ.World Electr Veh J,2021,12(1):47.6 陈浈斐,章黄勇,马宏忠,等.基于深度学习的电力设备故障诊断方法研究综述J.电气自动化,2022,44(1):1-2.CHEN Z
5、 F,ZHANG H Y,MA H Z,et al.Summary of research on fault diagnosis methods of power equipment based on deep learningJ.Electrical Automation,2022,44(1):1-2.7 李洪军,汪大春,杨哲昊,等.基于 DCGAN 的燃料电池故障诊断J.电池,2022,52(5):502-506.LI H J,WANG D C,YANG Z H,et al.Fuel cell fault diagnosis based on DCGANJ.Battery Bimonthl
6、y,2022,52(5):502-506.8 卢忠昌,刘芙蓉,杨扬,等.基于 FCM 聚类与 BO 算法的 PEM-FC 故障分类J.电池,2022,52(6):606-609.LU Z C,LIU F R,YANG Y,et al.Fault classification of PEMFC based on FCM clustering and BO algorithmJ.Battery Bimonthly,2022,52(6):606-609.9 赵士博,申彩英,郭增江.基于模糊神经网络的动力电池故障诊断研究J.汽车实用技术,2020,45(18):7-8.ZHAO S B,SHEN C
7、Y,GUO Z J.Research on fault diagnosis of power battery based on fuzzy neural networkJ.Automobile Ap-plied Technology,2020,45(18):7-8.10 LIU W Y,WEN Y D,YU Z D,et al.Large-margin softmax loss for convolutional neural networksC/ICML16:Proceedings of the 33rd International Conference on International C
8、onference on Machine Learning.New York:JMLR.org,2016,48:507-516.11 HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognitionC/Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016:770-778.收稿日期:2022-10-2650多年精心打造的品牌荣获首届“国家期刊奖”的杂志欢迎刊登 2023
9、年广告彩色黑白随你选!电池广告具有长久的影响力!电池广告为您扬名!在电池上刊登广告,具有长久的影响力!电池杂志对国内外公开发行,拥有众多国内外订户,电池荣获首届“国家期刊奖”,进入“中国期刊方阵”“双高”期刊行列!分别荣获第二届、第三届国家期刊奖百种重点期刊奖!电池已被多家国外权威刊物转载,传播面广,针对性强,读者专一。50 多年来,电池被中外读者精心珍藏,时时查阅,反复参考。电池广告使企业的名声大振。树立企业形象,提高知名度,吸引注意力,扩大市场份额,请赶快在电池上刊登广告!2023 年电池广告正在热卖中,请千万不要错过良机!请通过电子邮件、传真或拨打本刊热线与我们联系。本刊热线电话:0731-85141901 传真:0731-85427570 广告联系人:李 胜(13607482458)罗秋珍本刊电子邮件:batterie batterie QQ:821735423敬请关注:2022 年电池的广告客户都由电池因特网站 http:/ 和微信公众号“电池编辑部”推荐介绍,本刊 2023 年的广告客户都将享受同等待遇。享受我们的特别增值服务,欢迎访问电池网,关注微信公众号“电池编辑部”。162