1、2023,Vol.37,No.13wwwmater-repcom21100209-1基金项目:湖北省支持企业技术创新发展项目(QYJSCX2021000321);国家重点研发计划(SQ2020YFF0404755);湖北省“双创战略团队”项目(CYT-DC2018000094);鄂州市科技计划项目(EZ01-001-20190001);湖北省自然科学基金青年项目(2021CFB009)This work was financially supported by the Enterprise Technological Innovation and Development Project of
2、Hubei Province(QYJSCX2021000321),the Na-tional Key esearch and Development Program of China(SQ2020YFF0404755),the“Innovation and Entrepreneurship Strategic Team”Project of Hubei Pro-vince(CYTDC2018000094),the Science and Technology Program of Ezhou City(EZ01-001-20190001),and the Natural Science Fou
3、ndation of Hubei Province(2021CFB009)groupfxa163comDOI:10.11896/cldb.21100209高性能新型 Mg3(Sb,Bi)2基热电材料的发展现状徐晨辉1,2,孔栋1,2,况志祥1,2,陈卓1,2,马燕1,2,邹富祥1,2,陈昕1,2,胡晓明1,2,冯波1,2,樊希安1,2,1武汉科技大学钢铁冶金及资源利用省部共建教育部重点实验室,武汉 4300812武汉科技大学省部共建耐火材料与冶金国家重点实验室,武汉 430081热电材料能够实现热能与电能的相互转换,是一种可以应用于余热回收及半导体制冷等相关领域的功能性材料。传统热电材料的发展
4、目前已趋于成熟,但仍然面临着高昂的原料成本及较低的热电转换效率等问题。Mg3(Sb,Bi)2基热电材料自被发现以来就以其低成本的元素组成和作为Zintl 相具备的本征低热导率受到广泛关注。其中 n 型传导样品由于高能带简并度的优势更是有着较高的塞贝克系数,相较于传统中低温热电材料具备更大的发展潜力。然而,较大的带隙使得 Mg3(Sb,Bi)2基热电材料载流子浓度整体偏低,同时还存在着由 Mg 空位引起的热稳定性较差的问题。为此,在保证该材料低热导率的同时,研究者们尝试了不同的制备工艺,并通过组分优化和结构优化来不断改善其电输运性能及热稳定性。目前 Mg3(Sb,Bi)2基热电材料的最大 ZT
5、值已经达到 18 以上,同时其器件化后的热电转换效率也可媲美于传统 Bi2Te3基热电器件。本文总结了Mg3(Sb,Bi)2基热电材料的基础物理性能与制备方法,从不同的优化手段出发依次介绍了现阶段该材料的研究成果,并展望了其在未来可行的发展方向。关键词热电材料镁合金Mg3(Sb,Bi)2热电性能优化中图分类号:TB34文献标识码:ADevelopment of High Performance Mg3(Sb,Bi)2-based Thermoelectric MaterialsXU Chenhui1,2,KONG Dong1,2,KUANG Zhixiang1,2,CHEN Zhuo1,2,M
6、A Yan1,2,ZOU Fuxiang1,2,CHEN Xin1,2,HU Xiaoming1,2,FENG Bo1,2,FAN Xi an1,2,1Key Laboratory for Ferrous Metallurgy and esources Utilization of Ministry of Education,Wuhan University of Science and Technology,Wuhan 430081,China2The State Key Laboratory of efractories and Metallurgy,Wuhan University of
7、 Science and Technology,Wuhan 430081,ChinaThermoelectric materials that convert electric energy and thermal energy are applied as functional materials in waste heat recovery and semi-conductor refrigeration esearch on conventional thermoelectric materials has reached maturity;further development of
8、such materials ishampered by the high cost of raw materials and low thermoelectric conversion efficiency To overcome these limitations,Mg3(Sb,Bi)2Zintl pha-ses have attracted extensive attention since their discovery and have been widely applied as thermoelectric materials because of their low cost
9、andintrinsic low thermal conductivity In addition,N-type Mg3(Sb,Bi)2-based conduction materials,having a high Seebeck coefficient owing to highenergy band degeneracy,are hypothesized to be more effective than conventional medium-and low-temperature thermoelectric materialsHowever,the application of
10、Mg3(Sb,Bi)2-based thermoelectric materials is limited because of the low carrier concentration caused by the largebandgap and the low thermal stability due to Mg vacancies In addition to the maintenance of initial low thermal conductivity of such materials,re-searchers have continually tried to impr
11、ove the electrical transport performance and thermal stability by employing different preparation processesand by conducting component and structure optimization At present,the maximum ZT value of Mg3(Sb,Bi)2-based thermoelectric materials isabove 18,and the conversion efficiency of the Mg3(Sb,Bi)2-
12、based thermoelectric devices has been comparable to that of conventional low-tem-perature thermoelectric materials This paper summarizes the physical properties and preparation methods of Mg3(Sb,Bi)2-based thermoelectricmaterials The research progress on different optimization methods to prepare Mg3
13、(Sb,Bi)2-based thermoelectric materials is discussed in detail,and possible future developments of the materials are presentedKey wordsthermoelectric material,magnesium alloy,Mg3(Sb,Bi)2,optimization of thermoelectric performance0引言热电材料是一种可以直接将热能与电能进行相互转换的功能性材料,在回收低品位余热,提高能源利用效率上有着越来越重要的地位。目前对热电材料性能
14、的评判标准是无量纲品质因数,通常称为 ZT 值(Figure of merit),其表达式为 ZT=S2T/(e+l),其中 S 为塞贝克系数(Seebeck coef-ficient),为电导率(Electrical conductivity),T 为绝对温度(Absolute temperature),e与 l分别代表电子热导率(Elec-tron thermal conductivity)和晶格热导率(Lattice thermal con-ductivity),且加和为总热导率 (Total thermal conductivity)。此外,材料的电输运性能一般用功率因子(Power
15、factor,PF)来表征,且 PF=S2。高性能热电材料通常会具备较大的ZT 值,即较高的 PF 值和较低的 值,而满足这种条件的往往是重掺杂或窄带隙的半导体材料,如传统的 Bi2Te3、PbTe和 SiGe 等1-3。这些材料尽管热电优值较高,并且已投入实21100209-2际应用,但往往会含有高组分的稀贵金属或是有毒元素(如Te、Pb 等),使用成本很高,同时热电转换效率也远不如传统热机。例如,当前 Bi2Te3基热电材料是使用最广泛的商业化低温热电材料,但其最高转换效率也仅为 7%左右4。这说明寻找高转换效率、低成本、性能稳定且能实际应用的热电材料仍是当下面临的一大难题。随着热电技术的
16、不断发展,近些年涌现出大批性能优良的新型热电材料。其中,Mg3(Sb,Bi)2合金具有类似 Zintl 相的“电子晶体-声子玻璃”结构特性5,即由离子键与共价键共同组成的复杂晶体结构,在维持晶体导电的同时能像玻璃一样具备极低的热导率6。另外,该材料还具备无毒且低成本的原料来源,在发现其由 p 型转变为 n 型能够得到极高的ZT 值后,成为当下热门的研究对象7。该合金热导率极低,在 300700 K 下能低于2 W/(mK),在 Bi 含量合适时更能达到 08 W/(mK)以下,但由于 Mg 空位的存在,载流子迁移率普遍偏低(低于 50 cm2/V,300 K),功率因子也相对较低(低于 10 mW/(mK2)8。除此之外,在高温高压下,材料第二相的析出及结构改变也反映出其稳定性需要加强9-12。为此,研究者进行了一系列包括能带结构调整、制备工艺优化、外部元素掺杂、缺陷化学及散射机制研究等手段来弥补镁空位并优化其热电输运性能,不断提升 ZT 值13-17,目前报道的最大 ZT 值已达 185(723 K)18,远高于其余Zintl 相热电材料;此外,在热稳定性和力学性能的强化上Mg3(S