收藏 分享(赏)

2022年新高考全国II卷数学真题(解析版).docx

上传人:a****2 文档编号:2830211 上传时间:2024-01-05 格式:DOCX 页数:24 大小:1.38MB
下载 相关 举报
2022年新高考全国II卷数学真题(解析版).docx_第1页
第1页 / 共24页
2022年新高考全国II卷数学真题(解析版).docx_第2页
第2页 / 共24页
2022年新高考全国II卷数学真题(解析版).docx_第3页
第3页 / 共24页
2022年新高考全国II卷数学真题(解析版).docx_第4页
第4页 / 共24页
2022年新高考全国II卷数学真题(解析版).docx_第5页
第5页 / 共24页
2022年新高考全国II卷数学真题(解析版).docx_第6页
第6页 / 共24页
亲,该文档总共24页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2022年普通高等学校招生全国统一考试(新高考全国卷)数学注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则( )A. B. C. D. 【答案】B【解析】【分析】求出集合后可求.【详解】,故,故选:B.2. ( )A. B. C. D. 【答案】D【解析

2、】【分析】利用复数的乘法可求.【详解】,故选:D.3. 图1是中国古代建筑中的举架结构,是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图其中是举,是相等的步,相邻桁的举步之比分别为已知成公差为0.1的等差数列,且直线的斜率为0.725,则( )A. 0.75B. 0.8C. 0.85D. 0.9【答案】D【解析】【分析】设,则可得关于的方程,求出其解后可得正确的选项.【详解】设,则,依题意,有,且,所以,故,故选:D4. 已知向量,若,则( )A. B. C. 5D. 6【答案】C【解析】【分析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得【详解】解

3、:,即,解得,故选:C5. 有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( )A. 12种B. 24种C. 36种D. 48种【答案】B【解析】【分析】利用捆绑法处理丙丁,用插空法安排甲,利用排列组合与计数原理即可得解【详解】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:种不同的排列方式,故选:B6. 若,则( )A. B. C. D. 【答案】C【

4、解析】【分析】由两角和差的正余弦公式化简,结合同角三角函数的商数关系即可得解.【详解】由已知得:,即:,即:,所以,故选:C7. 已知正三棱台的高为1,上、下底面边长分别为和,其顶点都在同一球面上,则该球的表面积为( )A. B. C. D. 【答案】A【解析】【分析】根据题意可求出正三棱台上下底面所在圆面的半径,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积【详解】设正三棱台上下底面所在圆面的半径,所以,即,设球心到上下底面的距离分别为,球的半径为,所以,故或,即或,解得符合题意,所以球的表面积为故选:A8. 已知函数的定义域为R,且,则( )A. B.

5、 C. 0D. 1【答案】A【解析】【分析】根据题意赋值即可知函数的一个周期为,求出函数一个周期中的的值,即可解出【详解】因为,令可得,所以,令可得,即,所以函数为偶函数,令得,即有,从而可知,故,即,所以函数的一个周期为因为,所以一个周期内的由于22除以6余4,所以故选:A二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求全部选对的得5分,部分选对的得2分,有选错的得0分.9. 已知函数的图像关于点中心对称,则( )A. 在区间单调递减B. 在区间有两个极值点C. 直线是曲线的对称轴D. 直线是曲线的切线【答案】AD【解析】【分析】根据三角函数的性质逐个

6、判断各选项,即可解出【详解】由题意得:,所以,即,又,所以时,故对A,当时,由正弦函数图象知在上是单调递减;对B,当时,由正弦函数图象知只有1个极值点,由,解得,即为函数的唯一极值点;对C,当时,直线不是对称轴;对D,由得:,解得或,从而得:或,所以函数在点处的切线斜率为,切线方程为:即故选:AD10. 已知O为坐标原点,过抛物线焦点F的直线与C交于A,B两点,其中A在第一象限,点,若,则( )A. 直线的斜率为B. C. D. 【答案】ACD【解析】【分析】由及抛物线方程求得,再由斜率公式即可判断A选项;表示出直线的方程,联立抛物线求得,即可求出判断B选项;由抛物线的定义求出即可判断C选项;

7、由,求得,为钝角即可判断D选项.【详解】对于A,易得,由可得点在的垂直平分线上,则点横坐标为,代入抛物线可得,则,则直线的斜率为,A正确;对于B,由斜率为可得直线的方程为,联立抛物线方程得,设,则,则,代入抛物线得,解得,则,则,B错误;对于C,由抛物线定义知:,C正确;对于D,则为钝角,又,则为钝角,又,则,D正确.故选:ACD.11. 如图,四边形为正方形,平面,记三棱锥,的体积分别为,则( )A. B. C. D. 【答案】CD【解析】【分析】直接由体积公式计算,连接交于点,连接,由计算出,依次判断选项即可.【详解】设,因为平面,则,连接交于点,连接,易得,又平面,平面,则,又,平面,则

8、平面,又,过作于,易得四边形为矩形,则,则,则,则,则,故A、B错误;C、D正确.故选:CD.12. 若x,y满足,则( )A. B. C. D. 【答案】BC【解析】【分析】根据基本不等式或者取特值即可判断各选项的真假【详解】因为(R),由可变形为,解得,当且仅当时,当且仅当时,所以A错误,B正确;由可变形为,解得,当且仅当时取等号,所以C正确;因为变形可得,设,所以,因此,所以当时满足等式,但是不成立,所以D错误故选:BC三、填空题:本题共4小题,每小题5分,共20分.13. 已知随机变量X服从正态分布,且,则_【答案】#【解析】【分析】根据正态分布曲线的性质即可解出【详解】因为,所以,因

9、此故答案为:14. 曲线过坐标原点的两条切线的方程为_,_【答案】 . . 【解析】【分析】分和两种情况,当时设切点为,求出函数的导函数,即可求出切线的斜率,从而表示出切线方程,再根据切线过坐标原点求出,即可求出切线方程,当时同理可得;【详解】解: 因为,当时,设切点为,由,所以,所以切线方程为,又切线过坐标原点,所以,解得,所以切线方程为,即;当时,设切点为,由,所以,所以切线方程为,又切线过坐标原点,所以,解得,所以切线方程为,即;故答案为:;15. 设点,若直线关于对称的直线与圆有公共点,则a的取值范围是_【答案】【解析】【分析】首先求出点关于对称点的坐标,即可得到直线的方程,根据圆心到

10、直线的距离小于等于半径得到不等式,解得即可;【详解】解:关于对称的点的坐标为,在直线上,所以所在直线即为直线,所以直线为,即;圆,圆心,半径,依题意圆心到直线的距离,即,解得,即;故答案为:16. 已知直线l与椭圆在第一象限交于A,B两点,l与x轴,y轴分别交于M,N两点,且,则l的方程为_【答案】【解析】【分析】令中点为,设,利用点差法得到,设直线,求出、的坐标,再根据求出、,即可得解;【详解】解:令的中点为,因为,所以,设,则,所以,即所以,即,设直线,令得,令得,即,所以,即,解得或(舍去),又,即,解得或(舍去),所以直线,即;故答案为:四、解答题:本题共6小题,共70分解答应写出文字

11、说明,证明过程或演算步骤17. 已知为等差数列,是公比为2的等比数列,且(1)证明:;(2)求集合中元素个数【答案】(1)证明见解析; (2)【解析】【分析】(1)设数列的公差为,根据题意列出方程组即可证出;(2)根据题意化简可得,即可解出【小问1详解】设数列的公差为,所以,即可解得,所以原命题得证小问2详解】由(1)知,所以,即,亦即,解得,所以满足等式的解,故集合中的元素个数为18. 记的内角A,B,C的对边分别为a,b,c,分别以a,b,c为边长的三个正三角形的面积依次为,已知(1)求的面积;(2)若,求b【答案】(1) (2)【解析】【分析】(1)先表示出,再由求得,结合余弦定理及平方

12、关系求得,再由面积公式求解即可;(2)由正弦定理得,即可求解.【小问1详解】由题意得,则,即,由余弦定理得,整理得,则,又,则,则;【小问2详解】由正弦定理得:,则,则,.19. 在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);(2)估计该地区一位这种疾病患者的年龄位于区间的概率;(3)已知该地区这种疾病的患病率为,该地区年龄位于区间的人口占该地区总人口的.从该地区中任选一人,若此人的年龄位于区间,求此人患这种疾病的概率(以样本数据中患者的年龄位于各区间的频率作

13、为患者的年龄位于该区间的概率,精确到0.0001).【答案】(1)岁; (2); (3)【解析】【分析】(1)根据平均值等于各矩形的面积乘以对应区间的中点值的和即可求出;(2)设一人患这种疾病的年龄在区间,根据对立事件的概率公式即可解出;(3)根据条件概率公式即可求出【小问1详解】平均年龄 (岁)【小问2详解】设一人患这种疾病的年龄在区间,所以【小问3详解】设“任选一人年龄位于区间40,50)”,“从该地区中任选一人患这种疾病”,则由已知得:,则由条件概率公式可得从该地区中任选一人,若此人的年龄位于区间,此人患这种疾病的概率为20. 如图,是三棱锥的高,E是的中点(1)证明:平面;(2)若,求

14、二面角的正弦值【答案】(1)证明见解析 (2)【解析】【分析】(1)连接并延长交于点,连接、,根据三角形全等得到,再根据直角三角形的性质得到,即可得到为的中点从而得到,即可得证;(2)建立适当的空间直角坐标系,利用空间向量法求出二面角的余弦的绝对值,再根据同角三角函数的基本关系计算可得.【小问1详解】证明:连接并延长交于点,连接、,因为是三棱锥的高,所以平面,平面,所以、,又,所以,即,所以,又,即,所以,所以所以,即,所以为的中点,又为的中点,所以,又平面,平面,所以平面【小问2详解】解:过点作,如图建立平面直角坐标系,因为,所以,又,所以,则,所以,所以,所以,则,设平面的法向量为,则,令

15、,则,所以;设平面的法向量为,则,令,则,所以;所以.设二面角的大小为,则,所以,即二面角的正弦值为.21. 已知双曲线的右焦点为,渐近线方程为(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点在C上,且过P且斜率为的直线与过Q且斜率为的直线交于点M.从下面中选取两个作为条件,证明另外一个成立:M在上;注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1) (2)见解析【解析】【分析】(1)利用焦点坐标求得的值,利用渐近线方程求得的关系,进而利用的平方关系求得的值,得到双曲线的方程;(2)先分析得到直线的斜率存在且不为零,设直线AB的斜率为k, M(x0,y0)

16、,由|AM|=|BM|等价分析得到;由直线和的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线PQ的斜率,由等价转化为,由在直线上等价于,然后选择两个作为已知条件一个作为结论,进行证明即可.【小问1详解】右焦点为,,渐近线方程为,C的方程为:;【小问2详解】由已知得直线的斜率存在且不为零,直线的斜率不为零,若选由推或选由推:由成立可知直线的斜率存在且不为零;若选推,则为线段的中点,假若直线的斜率不存在,则由双曲线的对称性可知在轴上,即为焦点,此时由对称性可知、关于轴对称,与从而,已知不符;总之,直线的斜率存在且不为零.设直线的斜率为,直线方程为,则条件在上,等价于;两渐近线的方程合并

17、为,联立消去y并化简整理得:设,线段中点为,则,设,则条件等价于,移项并利用平方差公式整理得:,,即,即;由题意知直线的斜率为, 直线的斜率为,由,所以直线的斜率,直线,即,代入双曲线的方程,即中,得:,解得的横坐标:,同理:,,条件等价于,综上所述:条件在上,等价于;条件等价于;条件等价于;选推:由解得:,成立;选推:由解得:,成立;选推:由解得:,成立.22. 已知函数(1)当时,讨论的单调性;(2)当时,求a的取值范围;(3)设,证明:【答案】(1)的减区间为,增区间为. (2) (3)见解析【解析】【分析】(1)求出,讨论其符号后可得的单调性.(2)设,求出,先讨论时题设中的不等式不成

18、立,再就结合放缩法讨论符号,最后就结合放缩法讨论的范围后可得参数的取值范围.(3)由(2)可得对任意恒成立,从而可得对任意的恒成立,结合裂项相消法可证题设中的不等式.【小问1详解】当时,则,当时,当时,故的减区间为,增区间为.【小问2详解】设,则,又,设,则,若,则,因为为连续不间断函数,故存在,使得,总有,故在为增函数,故,故在为增函数,故,与题设矛盾.若,则,下证:对任意,总有成立,证明:设,故,故在上为减函数,故即成立.由上述不等式有,故总成立,即在上为减函数,所以当时,有, 所以在上为减函数,所以.综上,【小问3详解】取,则,总有成立,令,则,故即对任意的恒成立.所以对任意的,有,整理得到:,故,故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 考试真题 > 2.数学 > 1.数学高考真题试卷 > 2022年高考-数学 > 2022年新高考II卷-数学

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2