收藏 分享(赏)

2016年高考数学真题(理科)(天津自主命题).doc

上传人:a****2 文档编号:2830428 上传时间:2024-01-05 格式:DOC 页数:15 大小:716KB
下载 相关 举报
2016年高考数学真题(理科)(天津自主命题).doc_第1页
第1页 / 共15页
2016年高考数学真题(理科)(天津自主命题).doc_第2页
第2页 / 共15页
2016年高考数学真题(理科)(天津自主命题).doc_第3页
第3页 / 共15页
2016年高考数学真题(理科)(天津自主命题).doc_第4页
第4页 / 共15页
2016年高考数学真题(理科)(天津自主命题).doc_第5页
第5页 / 共15页
2016年高考数学真题(理科)(天津自主命题).doc_第6页
第6页 / 共15页
亲,该文档总共15页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2016天津高考理科数学真题及答案数 学(理工类)本试卷分第卷(选择题)和第卷(非选择题)两部分,共150分,考试用时120分钟。第卷1至2页,第卷3至5页。答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。考试结束后,将本试卷和答题卡一并交回。祝各位考生考试顺利!第卷注意事项:1. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。2. 本卷共8小题,每小题5分,共40分。参考公式:如果事件,互斥,那么如果事件,相互独立,那么.圆柱的体积公式.圆锥的体

2、积公式.其中表示圆柱的底面面积, 其中表示圆锥的底面面积,表示圆柱的高.表示圆锥的高.一. 选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 学科.网(1)已知集合,则 (A)(B) (C)(D)(2)设变量,满足约束条件则目标函数的最小值为 (A)(B)(C)(D)(3) 在中,若,则(A) (B)(C)(D)(4) 阅读右边的程序框图,运行相应的程序,则输出的值为(A) (B)(C)(D)(5) 设是首项为正数的等比数列,学科&网公比为,则“”是“对任意的正整数,”的(A) 充要条件 (B)充分而不必要条件(C)必要而不充分条件 (第4题图)(D)既不充分也不必要条件(6)已知

3、双曲线,以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于,四点,学科&网四边形的面积为,则双曲线的方程为(A)(B)(C)(D)(7) 已知是边长为的等边三角形,点,分别是边,的中点,连接并延长到点,使得,则的值为(A) (B)(C)(D)(8)已知函数(,学.科网且)在R上单调递减,且关于的方程恰好有两个不相等的实数解,则的取值范围是(A) (B)(C) (D) 绝密启用前2016年普通高等学校招生全国统一考试(天津卷)数 学(理工类)第卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上. 2. 本卷共12小题, 共110分.二填空题: 本大题共6小题, 每小题

4、5分, 共30分.(9)已知,R,是虚数单位,若,则的值为_.(10)的展开式中的系数为_.(用数字作答)正视图侧视图俯视图(第11题图)(11)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:),学科.网则该四棱锥的体积为_.(12) 如图,是圆的直径,弦与相交于点,则线段的长为_.(13) 已知是定义在R上的偶函数,且在区间上单调递增.若实数满足,则的取值范围是_.(第14题图)(14) 设抛物线(为参数,)的焦点,准线为.过抛物线上一点作的垂线,垂足为.设,与相交于点.若,且的面积为,则的值为_.三. 解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演

5、算步骤.(15)(本小题满分13分)已知函数.()求的定义域与最小正周期;()讨论在区间上的单调性.(16) (本小题满分13分)某小组共人,利用假期参加义工活动.已知参加义工活动次数为,的人数分别为,.现从这人中随机选出人作为该组代表参加座谈会.()设为事件“选出的人参加义工活动次数之和为”,求事件发生的概率;()设为选出的人参加义工活动次数之差的绝对值,求随机变量的分布列和数学期望.(17) (本小题满分13分)如图,正方形的中心为,四边形为矩形,平面平面,点为的中点,.()求证:平面;()求二面角的正弦值;()设为线段上的点,且,求直线和平面所成角的正弦值.(18) (本小题满分13分)

6、已知是各项均为正数的等差数列,学.科.网公差为.对任意的,是和的等比中项.()设,求证:数列是等差数列;()设,求证.(19) (本小题满分14分)设椭圆的右焦点为,右顶点为.已知,其中为原点,为椭圆的离心率. 学.科.网()求椭圆的方程;()设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点.若,且,求直线的斜率的取值范围.(20) (本小题满分14分)设函数,R,其中,R.()求的单调区间;()若存在极值点,且,其中,求证:;()设,函数,求证:在区间上的最大值不小于2016年普通高等学校招生全国统一考试(天津卷)数 学(理工类)一、选择题:(1)【答案】D(2)【答案

7、】B(3)【答案】A(4)【答案】B(5)【答案】C(6)【答案】D(7)【答案】B(8)【答案】C第卷二、填空题:(9)【答案】2(10)【答案】(11)【答案】2(12)【答案】(13)【答案】 (14) 【答案】三、解答题(15)【答案】(),()在区间上单调递增, 学科&网在区间上单调递减.【解析】试题分析:()先利用诱导公式、两角差余弦公式、二倍角公式、配角公式将函数化为基本三角函数:,再根据正弦函数性质求定义域、学科&网周期根据(1)的结论,研究三角函数在区间上单调性试题解析: 解:的定义域为.所以, 的最小正周期解:令函数的单调递增区间是由,得 设,易知.所以, 当学.科网时,

8、在区间上单调递增, 在区间上单调递减.考点:三角函数性质,诱导公式、两角差余弦公式、二倍角公式、配角公式【结束】 (16) 【答案】()()详见解析【解析】试题分析:()先确定从这10人中随机选出2人的基本事件种数:,再确定选出的2人参加义工活动次数之和为4所包含基本事件数:,最后根据概率公式求概率()先确定随机变量可能取值为学.科网再分别求出对应概率,列出概率分布,最后根据公式计算数学期望试题解析:解:由已知,有所以,事件发生的概率为.随机变量的所有可能取值为,.所以,随机变量学.科网分布列为随机变量的数学期望.考点:概率,概率分布与数学期望【结束】 (17) 【答案】()详见解析()()【

9、解析】试题分析:()利用空间向量证明线面平行,关键是求出面的法向量,利用法向量与直线方向向量垂直进行论证()利用空间向量求二面角,关键是求出面的法向量,再利用向量数量积求出法向量夹角,最后根据向量夹角与二面角相等或互补关系求正弦值()利用空间向量证明线面平行,关键是求出面的法向量,再利用向量数量积求出法向量夹角,最后根据向量夹角与线面角互余关系求正弦值试题解析:依题意,如图,以为点,分别以的方向为轴,轴、轴的正方向建立空间直角坐标系,依题意可得,.(I)证明:依题意,.设为平面的法向量,则,即 .不妨设,可得,又,可得,又因为直线,所以.(II)解:易证,为平面的一个法向量.依题意,.设为平面

10、的法向量,则,即 .不妨设,可得.因此有,于是,所以,二面角的正弦值为.(III)解:由,学.科网得.因为,所以,进而有,从而,因此.所以,直线和平面所成角的正弦值为.考点:利用空间向量解决立体几何问题【结束】(18) 【答案】()详见解析()详见解析【解析】试题分析:()先根据等比中项定义得:,从而,因此根据等差数列定义可证:() 对数列不等式证明一般以算代证先利用分组求和化简,再利用裂项相消法求和,易得结论.试题解析:(I)证明:由题意得,有,因此,所以是等差数列.(II)证明: 所以.考点:等差数列、等比中项、分组求和、裂项相消求和【结束】(19)【答案】()()【解析】试题分析:()求

11、椭圆标准方程,只需确定量,由,得,再利用,可解得,()先化简条件:,即M再OA中垂线上,再利用直线与椭圆位置关系,联立方程组求;利用两直线方程组求H,最后根据,列等量关系解出直线斜率.取值范围试题解析:(1)解:设,由,即,可得,又,所以,因此,所以椭圆的方程为.(2)()解:设直线的斜率为(),则直线的方程为.设,由方程组,消去,整理得.解得,或,由题意得,从而.由()知,设,有,.由,得,所以,解得.因此直线的方程为.设,由方程组消去,解得.在中,即,化简得,即,解得或.所以,直线的斜率的取值范围为.考点:学.科网椭圆的标准方程和几何性质,直线方程【结束】(20)【答案】()详见解析()详

12、见解析()详见解析【解析】试题分析:()先求函数的导数:,再根据导函数零点是否存在情况,分类讨论:当时,有恒成立,所以的单调增区间为.当时,存在三个单调区间()由题意得,计算可得再由及单调性可得结论()实质研究函数最大值:主要比较,的大小即可,分三种情况研究当时,当时,当时,.试题解析:()解:由,可得.下面分两种情况讨论:(1)当时,有恒成立,所以的单调递增区间为.(2)当时,令,解得,或.当变化时,的变化情况如下表:00单调递增极大值单调递减极小值单调递增所以的单调递减区间为,单调递增区间为,.()证明:因为存在极值点,所以由()知,且,由题意,得,即,进而.又,且,由题意及()知,存在唯一实数满足 ,且,因此,所以;()证明:设在区间上的最大值为,表示两数的最大值.下面分三种情况同理:(1)当时,由()知,在区间上单调递减,所以在区间上的取值范围为,因此,所以.(2)当时,由()和()知,所以在区间上的取值范围为,因此.(3)当时,由()和()知,学.科网所以在区间上的取值范围为,因此.综上所述,当时,在区间上的最大值不小于.考点:导数的运算,利用导数研究函数的性质、证明不等式【结束】

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 考试真题 > 2.数学 > 2.按省份整理 > 2.天津历年数学真题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2