1、2011年辽宁高考文科数学真题及答案注意事项:1本试卷分第卷(选择题)和第卷(非选择题)两部分,答卷前,考生务必将自己的姓名、准考证号填写在答题卡上2回答第卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑如需改动,用橡皮擦干净后,再选涂其他答案标号写在本试卷上无效3回答第卷时,将答案写在答题卡上,写在本试卷上无效4考试结束后,将本试卷和答题卡一并交回第卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1已知集合A=x,B=x,则AB=AxBx CxDx2为虚数单位,A0 B2 C D43已知向量,则A B C6 D124已知命题P:nN
2、,2n1000,则P为AnN,2n1000 BnN,2n1000CnN,2n1000 DnN,2n10005若等比数列an满足anan+1=16n,则公比为A2 B4 C8 D166若函数为奇函数,则a=A B C D17已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,则线段AB的中点到y轴的距离为A B1 C D8一个正三棱柱的侧棱长和底面边长相等,体积为,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是A4 B C2 D9执行右面的程序框图,如果输入的n是4,则输出的P是A8B5C3D210已知球的直径SC=4,A,B是该球球面上的两点,AB=2,ASC=BSC
3、=45,则棱锥S-ABC的体积为A BC D11函数的定义域为,对任意,则的解集为A(,1) B(,+) C(,)D(,+)12已知函数=Atan(x+)(),y=的部分图像如下图,则A2+ BC D第卷本卷包括必考题和选考题两部分第13题第21题为必考题,每个试题考生都必须做答第22题第24题为选考题,考生根据要求做答二、填空题:本大题共4小题,每小题5分13已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上,则C的方程为_14调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:
4、由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加_万元15Sn为等差数列an的前n项和,S2=S6,a4=1,则a5=_16已知函数有零点,则的取值范围是_三、解答题:解答应写文字说明,证明过程或演算步骤17(本小题满分12分)ABC的三个内角A,B,C所对的边分别为a,b,c,asinAsinB+bcos2A=a(I)求;(II)若c2=b2+a2,求B18(本小题满分12分)如图,四边形ABCD为正方形,QA平面ABCD,PDQA,QA=AB=PD(I)证明:PQ平面DCQ;(II)求棱锥QABCD的的体积与棱锥PDCQ的体积的比值19(本小题满分12分)某农场计划种植某种新
5、作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙(I)假设n=2,求第一大块地都种植品种甲的概率;(II)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如下表:品种甲403397390404388400412406品种乙419403412418408423400413分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?附:样本数据的的样本方差,其中为样本平均数20(本
6、小题满分12分)设函数=x+ax2+blnx,曲线y=过P(1,0),且在P点处的切斜线率为2(I)求a,b的值;(II)证明:2x-221(本小题满分12分)如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上,椭圆C2的短轴为MN,且C1,C2的离心率都为e,直线lMN,l与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A,B,C,D(I)设,求与的比值;(II)当e变化时,是否存在直线l,使得BOAN,并说明理由请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题计分做答是用2B铅笔在答题卡上把所选题目对应题号下方的方框涂黑22(本小题满分10分
7、)选修4-1:几何证明选讲如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED(I)证明:CD/AB;(II)延长CD到F,延长DC到G,使得EF=EG,证明:A,B,G,F四点共圆23(本小题满分10分)选修4-4:坐标系统与参数方程在平面直角坐标系xOy中,曲线C1的参数方程为(为参数),曲线C2的参数方程为(,为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:=与C1,C2各有一个交点当=0时,这两个交点间的距离为2,当=时,这两个交点重合(I)分别说明C1,C2是什么曲线,并求出a与b的值;(II)设当=时,l与C1,C2的交点分别为A1,
8、B1,当=时,l与C1,C2的交点为A2,B2,求四边形A1A2B2B1的面积24(本小题满分10分)选修4-5:不等式选讲已知函数=|x-2|x-5|(I)证明:3;(II)求不等式x2x+15的解集参考答案评分说明:1本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3解答右端所注分数,表示考生正确做到这一步应得的累加分
9、数.4只给整数分数,选择题不给中间分.一、选择题15 DADAB 610 ACBCC 1112 BB二、填空题13140.25415116三、解答题17解:(I)由正弦定理得,即故 6分 (II)由余弦定理和由(I)知故可得 12分18解:(I)由条件知PDAQ为直角梯形因为QA平面ABCD,所以平面PDAQ平面ABCD,交线为AD.又四边形ABCD为正方形,DCAD,所以DC平面PDAQ,可得PQDC.在直角梯形PDAQ中可得DQ=PQ=PD,则PQQD所以PQ平面DCQ. 6分 (II)设AB=a.由题设知AQ为棱锥QABCD的高,所以棱锥QABCD的体积由(I)知PQ为棱锥PDCQ的高,
10、而PQ=,DCQ的面积为,所以棱锥PDCQ的体积为故棱锥QABCD的体积与棱锥PDCQ的体积的比值为1.12分19解:(I)设第一大块地中的两小块地编号为1,2,第二大块地中的两小块地编号为3,4,令事件A=“第一大块地都种品种甲”.从4小块地中任选2小块地种植品种甲的基本事件共6个;(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).而事件A包含1个基本事件:(1,2).所以 6分 (II)品种甲的每公顷产量的样本平均数和样本方差分别为: 8分品种乙的每公顷产量的样本平均数和样本方差分别为: 10分由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样
11、本方差差异不大,故应该选择种植品种乙.20解:(I) 2分由已知条件得解得 5分 (II),由(I)知设则而 12分21解:(I)因为C1,C2的离心率相同,故依题意可设设直线,分别与C1,C2的方程联立,求得 4分当表示A,B的纵坐标,可知 6分 (II)t=0时的l不符合题意.时,BO/AN当且仅当BO的斜率kBO与AN的斜率kAN相等,即解得因为所以当时,不存在直线l,使得BO/AN;当时,存在直线l使得BO/AN. 12分22解: (I)因为EC=ED,所以EDC=ECD.因为A,B,C,D四点在同一圆上,所以EDC=EBA.故ECD=EBA,所以CD/AB. 5分 (II)由(I)知
12、,AE=BE,因为EF=FG,故EFD=EGC从而FED=GEC.连结AF,BG,则EFAEGB,故FAE=GBE,又CD/AB,EDC=ECD,所以FAB=GBA.所以AFG+GBA=180.故A,B,G,F四点共圆 10分23解: (I)C1是圆,C2是椭圆. 当时,射线l与C1,C2交点的直角坐标分别为(1,0),(a,0),因为这两点间的距离为2,所以a=3. 当时,射线l与C1,C2交点的直角坐标分别为(0,1),(0,b),因为这两点重合,所以b=1. (II)C1,C2的普通方程分别为 当时,射线l与C1交点A1的横坐标为,与C2交点B1的横坐标为 当时,射线l与C1,C2的两个交点A2,B2分别与A1,B1关于x轴对称,因此,四边形A1A2B2B1为梯形.故四边形A1A2B2B1的面积为 10分24解: (I) 当 所以 5分 (II)由(I)可知, 当的解集为空集; 当; 当. 综上,不等式 10分系