1、绝密启用前 2006年普通高等学校招生全国统一考试(上海卷)数学试卷(理工农医类)(满分150分,考试时间120分钟)考生注意1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一填空题(本大题满分48分)1已知集合A1,3,21,集合B3,若BA,则实数 2已知圆440的圆心是点P,则点P到直线10的距离是 3若函数(0,且1
2、)的反函数的图像过点(2,1),则 4计算: 5若复数同时满足2,(为虚数单位),则 6如果,且是第四象限的角,那么 7已知椭圆中心在原点,一个焦点为F(2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 8在极坐标系中,O是极点,设点A(4,),B(5,),则OAB的面积是 9两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本将它们任意地排成一排,左边4本恰好都属于同一部小说的概率是 (结果用分数表示)10如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是 11若曲线|1与
3、直线没有公共点,则、分别应满足的条件是 12三个同学对问题“关于的不等式25|5|在1,12上恒成立,求实数的取值范围”提出各自的解题思路甲说:“只须不等式左边的最小值不小于右边的最大值”乙说:“把不等式变形为左边含变量的函数,右边仅含常数,求函数的最值”丙说:“把不等式两边看成关于的函数,作出函数图像”参考上述解题思路,你认为他们所讨论的问题的正确结论,即的取值范围是 二选择题(本大题满分16分)ABCD13如图,在平行四边形ABCD中,下列结论中错误的是 答( )(A);(B);(C);(D)14若空间中有四个点,则“这四个点中有三点在同一直线上”是“这四个点在同一平面上”的 答( )(A
4、)充分非必要条件;(B)必要非充分条件;(C)充要条件;(D)非充分非必要条件15若关于的不等式4的解集是M,则对任意实常数,总有答( )(A)2M,0M; (B)2M,0M; (C)2M,0M; (D)2M,0MOM(,)16如图,平面中两条直线和相交于点O,对于平面上任意一点M,若、分别是M到直线和的距离,则称有序非负实数对(,)是点M的“距离坐标”已知常数0,0,给出下列命题:若0,则“距离坐标”为(0,0)的点有且仅有1个;若0,且0,则“距离坐标”为(,)的点有且仅有2个;若0,则“距离坐标”为(,)的点有且仅有4个上述命题中,正确命题的个数是 答( )(A)0; (B)1; (C)
5、2; (D)3三解答题(本大题满分86分)本大题共有6题,解答下列各题必须写出必要的步骤17(本题满分12分)求函数2的值域和最小正周期解18(本题满分12分)如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救甲船立即前往救援,同时把消息告知在甲船的南偏西30,相距10海里C处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B处救援(角度精确到1)?北2010ABC解19(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分)PABCDOE在四棱锥PABCD中,底面是边长为2的菱形,DAB60,对角线AC与BD相交于点O,PO平面ABCD,PB与平
6、面ABCD所成的角为60(1)求四棱锥PABCD的体积;(2)若E是PB的中点,求异面直线DE与PA所成角的大小(结果用反三角函数值表示)解(1)(2)20(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分)在平面直角坐标系O中,直线与抛物线2相交于A、B两点(1)求证:“如果直线过点T(3,0),那么3”是真命题;(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由解(1)(2)21(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分)已知有穷数列共有2项(整数2),首项2设该数列的前项和为,且2(1,2,21),其中常
7、数1(1)求证:数列是等比数列;(2)若2,数列满足(1,2,2),求数列的通项公式;(3)若(2)中的数列满足不等式|4,求的值解(1)(2)(3)22(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分)已知函数有如下性质:如果常数0,那么该函数在0,上是减函数,在,上是增函数(1)如果函数(0)的值域为6,求的值;(2)研究函数(常数0)在定义域内的单调性,并说明理由;(3)对函数和(常数0)作出推广,使它们都是你所推广的函数的特例研究推广后的函数的单调性(只须写出结论,不必证明),并求函数(是正整数)在区间,2上的最大值和最小值(可利用你的研究结论)解(1)(2)(3)