1、绝密启用前 2004年普通高等学校招生全国统一考试(上海卷)数学试卷(文史类)(满分150分,考试时间120分钟)考生注意1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、填空题(本大题满分48分,每小题4分)1若tg=,则tg(+)= .2设抛物线的顶点坐标为(2,0),准线方程为x=1,则它的焦点坐标为 .3设集合A=
2、5,log2(a+3),集合B=a,b.若AB=2,则AB= .4设等比数列an(nN)的公比q=-,且(a1+a3+a5+a2n-1)=,则a1= .5设奇函数f(x)的定义域为5,5.若当x0,5时, f(x)的图象如右图,则不等式f(x)0的解是 .6已知点A(1,5)和向量=2,3,若=3,则点B的坐 标为 .2x47当x、y满足不等式组y3 时,目标函数k=3x2y的最大值为 .x+y88圆心在直线x=2上的圆C与y轴交于两点A(0, 4),B(0, 2),则圆C的方程为 .9若在二项式(x+1)10的展开式中任取一项,则该项的系数为奇数的概率是 . (结果用分数表示)10若函数f(
3、x)= a在0,+上为增函数,则实数a、b的取值范围是 .11教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是 。12若干个能唯一确定一个数列的量称为该数列的“基本量”.设an是公比为q的无穷等比数列,下列an的四组量中,一定能成为该数列“基本量”的是第 组.(写出所有符合要求的组号) S1与S2; a2与S3; a1与an; q与an. 其中n为大于1的整数, Sn为an的前n项和.二、选择题(本大题满分16分,每小题4分)13在下列关于直线l、m与平面、的命题中,真命题是( ) A若l且,则l. B若l且,则l.C若l且,则l. D若=m且lm,则l.14三角方程2s
4、in(x)=1的解集为( ) Axx=2k+,kZ. Bxx=2k+,kZ.Cxx=2k,kZ. Dxx=k+(1)K,kZ.15若函数y=f(x)的图象与函数y=lg(x+1)的图象关于直线xy=0对称,则f(x)=( ) A10x1. B110x. C110x. D10x1.16某地2004年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下行业名称计算机机械营销物流贸易应聘人数2158302002501546767457065280 行业名称计算机营销机械建筑 化工招聘人数 124620102935891157651670436 若用同一行业中应聘人数与招聘人数比值的大小来衡量该行业的
5、就业情况,则根据表中数据,就业形势一定是( ) A计算机行业好于化工行业. B建筑行业好于物流行业.C机械行业最紧张. D营销行业比贸易行业紧张.三、解答题(本大题满分86分)17(本题满分12分) 已知复数z1满足(1+i)z1=1+5i, z2=a2i, 其中i为虚数单位,aR, 若,求a的取值范围. 18(本题满分12分)某单位用木料制作如图所示的框架, 框架的下部是边长分别为x、y(单位:m)的矩形.上部是等腰直角三角形. 要求框架围成的总面积8m2. 问x、y分别为多少(精确到0.001m) 时用料最省?19(本题满分14分) 第1小题满分6分, 第2小题满分8分 记函数f(x)=的定义域为A, g(x)=lg(xa1)(2ax)(ab0). 点P1(a,0), 对于给定的自然数n, 当公差d变化时, 求Sn的最小值.符号意义本试卷所用符号等同于实验教材符号向量坐标=x,y=(x,y)正切tgtan