1、2009年全国统一高考数学试卷(文科)(全国卷)一、选择题(共12小题,每小题5分,满分60分)1(5分)sin585的值为()ABCD2(5分)设集合A=4,5,7,9,B=3,4,7,8,9,全集U=AB,则集合U(AB)中的元素共有()A3个B4个C5个D6个3(5分)不等式1的解集为()Ax|0x1x|x1Bx|0x1Cx|1x0Dx|x04(5分)已知tana=4,cot=,则tan(a+)=()ABCD5(5分)已知双曲线=1(a0,b0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率为()AB2CD6(5分)已知函数f(x)的反函数为g(x)=1+2lgx(x0),则f(1
2、)+g(1)=()A0B1C2D47(5分)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A150种B180种C300种D345种8(5分)设非零向量、满足,则=()A150B120C60D309(5分)已知三棱柱ABCA1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为()ABCD10(5分)如果函数y=3cos(2x+)的图象关于点(,0)中心对称,那么|的最小值为()ABCD11(5分)已知二面角l为60,动点P、Q分别在面、内,P到的
3、距离为,Q到的距离为,则P、Q两点之间距离的最小值为()A1B2CD412(5分)已知椭圆C:+y2=1的右焦点为F,右准线为l,点Al,线段AF交C于点B,若=3,则|=()AB2CD3二、填空题(共4小题,每小题5分,满分20分)13(5分)(xy)10的展开式中,x7y3的系数与x3y7的系数之和等于 14(5分)设等差数列an的前n的和为Sn,若S9=72,则a2+a4+a9= 15(5分)已知OA为球O的半径,过OA的中点M且垂直于OA的平面截球面得到圆M若圆M的面积为3,则球O的表面积等于 16(5分)若直线m被两平行线l1:xy+1=0与l2:xy+3=0所截得的线段的长为,则m
4、的倾斜角可以是1530456075其中正确答案的序号是 (写出所有正确答案的序号)三、解答题(共6小题,满分70分)17(10分)设等差数列an的前n项和为Sn,公比是正数的等比数列bn的前n项和为Tn,已知a1=1,b1=3,a3+b3=17,T3S3=12,求an,bn的通项公式18(12分)在ABC中,内角A、B、C的对边长分别为a、b、c,已知a2c2=2b,且sinAcosC=3cosAsinC,求b19(12分)如图,四棱锥SABCD中,底面ABCD为矩形,SD底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,ABM=60(I)证明:M是侧棱SC的中点;()求二面角SAMB的
5、大小20(12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立已知前2局中,甲、乙各胜1局()求再赛2局结束这次比赛的概率;()求甲获得这次比赛胜利的概率21(12分)已知函数f(x)=x43x2+6()讨论f(x)的单调性;()设点P在曲线y=f(x)上,若该曲线在点P处的切线l通过坐标原点,求l的方程22(12分)如图,已知抛物线E:y2=x与圆M:(x4)2+y2=r2(r0)相交于A、B、C、D四个点()求r的取值范围;()当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐
6、标2009年全国统一高考数学试卷(文科)(全国卷)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1(5分)sin585的值为()ABCD【考点】GE:诱导公式菁优网版权所有【分析】由sin(+2k)=sin、sin(+)=sin及特殊角三角函数值解之【解答】解:sin585=sin(585360)=sin225=sin(45+180)=sin45=,故选:A【点评】本题考查诱导公式及特殊角三角函数值2(5分)设集合A=4,5,7,9,B=3,4,7,8,9,全集U=AB,则集合U(AB)中的元素共有()A3个B4个C5个D6个【考点】1H:交、并、补集的混合运算菁优网版权所
7、有【分析】根据交集含义取A、B的公共元素写出AB,再根据补集的含义求解【解答】解:AB=3,4,5,7,8,9,AB=4,7,9U(AB)=3,5,8故选A也可用摩根律:U(AB)=(UA)(UB)故选:A【点评】本题考查集合的基本运算,较简单3(5分)不等式1的解集为()Ax|0x1x|x1Bx|0x1Cx|1x0Dx|x0【考点】7E:其他不等式的解法菁优网版权所有【分析】本题为绝对值不等式,去绝对值是关键,可利用绝对值意义去绝对值,也可两边平方去绝对值【解答】解:1,|x+1|x1|,x2+2x+1x22x+1x0不等式的解集为x|x0故选:D【点评】本题主要考查解绝对值不等式,属基本题
8、解绝对值不等式的关键是去绝对值,去绝对值的方法主要有:利用绝对值的意义、讨论和平方4(5分)已知tana=4,cot=,则tan(a+)=()ABCD【考点】GP:两角和与差的三角函数菁优网版权所有【专题】11:计算题【分析】由已知中cot=,由同角三角函数的基本关系公式,我们求出角的正切值,然后代入两角和的正切公式,即可得到答案【解答】解:tana=4,cot=,tan=3tan(a+)=故选:B【点评】本题考查的知识点是两角和与差的正切函数,其中根据已知中角的余切值,根据同角三角函数的基本关系公式,求出角的正切值是解答本题的关键5(5分)已知双曲线=1(a0,b0)的渐近线与抛物线y=x2
9、+1相切,则该双曲线的离心率为()AB2CD【考点】KC:双曲线的性质;KH:直线与圆锥曲线的综合菁优网版权所有【专题】11:计算题【分析】先求出渐近线方程,代入抛物线方程,根据判别式等于0,找到a和b的关系,从而推断出a和c的关系,答案可得【解答】解:由题双曲线的一条渐近线方程为,代入抛物线方程整理得ax2bx+a=0,因渐近线与抛物线相切,所以b24a2=0,即,故选:C【点评】本小题考查双曲线的渐近线方程直线与圆锥曲线的位置关系、双曲线的离心率,基础题6(5分)已知函数f(x)的反函数为g(x)=1+2lgx(x0),则f(1)+g(1)=()A0B1C2D4【考点】4R:反函数菁优网版
10、权所有【专题】11:计算题【分析】将x=1代入即可求得g(1),欲求f(1),只须求当g(x)=1时x的值即可从而解决问题【解答】解:由题令1+2lgx=1得x=1,即f(1)=1,又g(1)=1,所以f(1)+g(1)=2,故选:C【点评】本小题考查反函数,题目虽然简单,却考查了对基础知识的灵活掌握情况,也考查了运用知识的能力7(5分)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A150种B180种C300种D345种【考点】D1:分类加法计数原理;D2:分步乘法计数原理菁优网版权所有【专题】5O:排
11、列组合【分析】选出的4人中恰有1名女同学的不同选法,1名女同学来自甲组和乙组两类型【解答】解:分两类(1)甲组中选出一名女生有C51C31C62=225种选法;(2)乙组中选出一名女生有C52C61C21=120种选法故共有345种选法故选:D【点评】分类加法计数原理和分类乘法计数原理,最关键做到不重不漏,先分类,后分步!8(5分)设非零向量、满足,则=()A150B120C60D30【考点】9S:数量积表示两个向量的夹角菁优网版权所有【分析】根据向量加法的平行四边形法则,两个向量的模长相等可构成菱形的两条相邻边,三个向量起点处的对角线长等于菱形的边长,这样得到一个含有特殊角的菱形【解答】解:
12、由向量加法的平行四边形法则,两个向量的模长相等、可构成菱形的两条相邻边,、为起点处的对角线长等于菱形的边长,两个向量的夹角是120,故选:B【点评】本小题考查向量的几何运算、考查数形结合的思想,基础题向量知识,向量观点在数学物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体9(5分)已知三棱柱ABCA1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为()ABCD【考点】LO:空间中直线与直线之间的位置关系菁优网版权所有【分析】首先找到异面直线AB与CC1所成的角(如A1AB);而欲求其余弦值
13、可考虑余弦定理,则只要表示出A1B的长度即可;不妨设三棱柱ABCA1B1C1的侧棱与底面边长为1,利用勾股定理即可求之【解答】解:设BC的中点为D,连接A1D、AD、A1B,易知=A1AB即为异面直线AB与CC1所成的角;并设三棱柱ABCA1B1C1的侧棱与底面边长为1,则|AD|=,|A1D|=,|A1B|=,由余弦定理,得cos=故选:D【点评】本题主要考查异面直线的夹角与余弦定理10(5分)如果函数y=3cos(2x+)的图象关于点(,0)中心对称,那么|的最小值为()ABCD【考点】HB:余弦函数的对称性菁优网版权所有【专题】11:计算题【分析】先根据函数y=3cos(2x+)的图象关
14、于点中心对称,令x=代入函数使其等于0,求出的值,进而可得|的最小值【解答】解:函数y=3cos(2x+)的图象关于点中心对称由此易得故选:A【点评】本题主要考查余弦函数的对称性属基础题11(5分)已知二面角l为60,动点P、Q分别在面、内,P到的距离为,Q到的距离为,则P、Q两点之间距离的最小值为()A1B2CD4【考点】LQ:平面与平面之间的位置关系菁优网版权所有【专题】11:计算题;16:压轴题【分析】分别作QA于A,ACl于C,PB于B,PDl于D,连CQ,BD则ACQ=PBD=60,在三角形APQ中将PQ表示出来,再研究其最值即可【解答】解:如图分别作QA于A,ACl于C,PB于B,
15、PDl于D,连CQ,BD则ACQ=PDB=60,又当且仅当AP=0,即点A与点P重合时取最小值故选:C【点评】本题主要考查了平面与平面之间的位置关系,以及空间中直线与平面之间的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题12(5分)已知椭圆C:+y2=1的右焦点为F,右准线为l,点Al,线段AF交C于点B,若=3,则|=()AB2CD3【考点】K4:椭圆的性质菁优网版权所有【专题】11:计算题;16:压轴题【分析】过点B作BMx轴于M,设右准线l与x轴的交点为N,根据椭圆的性质可知FN=1,进而根据,求出BM,AN,进而可得|AF|【解答】解:过点B作BMx轴于M,并设右准线
16、l与x轴的交点为N,易知FN=1由题意,故FM=,故B点的横坐标为,纵坐标为即BM=,故AN=1,故选:A【点评】本小题考查椭圆的准线、向量的运用、椭圆的定义,属基础题二、填空题(共4小题,每小题5分,满分20分)13(5分)(xy)10的展开式中,x7y3的系数与x3y7的系数之和等于240【考点】DA:二项式定理菁优网版权所有【专题】11:计算题【分析】首先要了解二项式定理:(a+b)n=Cn0anb0+Cn1an1b1+Cn2an2b2+Cnranrbr+Cnna0bn,各项的通项公式为:Tr+1=Cnranrbr然后根据题目已知求解即可【解答】解:因为(xy)10的展开式中含x7y3的
17、项为C103x103y3(1)3=C103x7y3,含x3y7的项为C107x107y7(1)7=C107x3y7由C103=C107=120知,x7y3与x3y7的系数之和为240故答案为240【点评】此题主要考查二项式定理的应用问题,对于公式:(a+b)n=Cn0anb0+Cn1an1b1+Cn2an2b2+Cnranrbr+Cnna0bn,属于重点考点,同学们需要理解记忆14(5分)设等差数列an的前n的和为Sn,若S9=72,则a2+a4+a9=24【考点】83:等差数列的性质菁优网版权所有【分析】先由S9=72用性质求得a5,而3(a1+4d)=3a5,从而求得答案【解答】解:a5=
18、8又a2+a4+a9=3(a1+4d)=3a5=24故答案是24【点评】本题主要考查等差数列的性质及项与项间的内在联系15(5分)已知OA为球O的半径,过OA的中点M且垂直于OA的平面截球面得到圆M若圆M的面积为3,则球O的表面积等于16【考点】LG:球的体积和表面积菁优网版权所有【专题】11:计算题;16:压轴题【分析】由题意求出圆M的半径,设出球的半径,二者与OM构成直角三角形,求出球的半径,然后可求球的表面积【解答】解:圆M的面积为3,圆M的半径r=,设球的半径为R,由图可知,R2=R2+3,R2=3,R2=4S球=4R2=16故答案为:16【点评】本题是基础题,考查球的体积、表面积的计
19、算,理解并能够应用小圆的半径、球的半径、以及球心与圆心的连线的关系,是本题的突破口,解题重点所在,仔细体会16(5分)若直线m被两平行线l1:xy+1=0与l2:xy+3=0所截得的线段的长为,则m的倾斜角可以是1530456075其中正确答案的序号是或(写出所有正确答案的序号)【考点】I2:直线的倾斜角;N1:平行截割定理菁优网版权所有【专题】11:计算题;15:综合题;16:压轴题【分析】先求两平行线间的距离,结合题意直线m被两平行线l1与l2所截得的线段的长为,求出直线m与l1的夹角为30,推出结果【解答】解:两平行线间的距离为,由图知直线m与l1的夹角为30,l1的倾斜角为45,所以直
20、线m的倾斜角等于30+45=75或4530=15故填写或故答案为:或【点评】本题考查直线的斜率、直线的倾斜角,两条平行线间的距离,考查数形结合的思想三、解答题(共6小题,满分70分)17(10分)设等差数列an的前n项和为Sn,公比是正数的等比数列bn的前n项和为Tn,已知a1=1,b1=3,a3+b3=17,T3S3=12,求an,bn的通项公式【考点】8M:等差数列与等比数列的综合菁优网版权所有【专题】11:计算题【分析】设an的公差为d,数列bn的公比为q0,由题得,由此能得到an,bn的通项公式【解答】解:设an的公差为d,数列bn的公比为q0,由题得,解得q=2,d=2an=1+2(
21、n1)=2n1,bn=32n1【点评】本小题考查等差数列与等比数列的通项公式、前n项和,基础题18(12分)在ABC中,内角A、B、C的对边长分别为a、b、c,已知a2c2=2b,且sinAcosC=3cosAsinC,求b【考点】HR:余弦定理菁优网版权所有【分析】根据正弦定理和余弦定理将sinAcosC=3cosAsinC化成边的关系,再根据a2c2=2b即可得到答案【解答】解:法一:在ABC中sinAcosC=3cosAsinC,则由正弦定理及余弦定理有:,化简并整理得:2(a2c2)=b2又由已知a2c2=2b4b=b2解得b=4或b=0(舍);法二:由余弦定理得:a2c2=b22bc
22、cosA又a2c2=2b,b0所以b=2ccosA+2又sinAcosC=3cosAsinC,sinAcosC+cosAsinC=4cosAsinCsin(A+C)=4cosAsinC,即sinB=4cosAsinC由正弦定理得,故b=4ccosA由,解得b=4【点评】本题主要考查正弦定理和余弦定理的应用属基础题19(12分)如图,四棱锥SABCD中,底面ABCD为矩形,SD底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,ABM=60(I)证明:M是侧棱SC的中点;()求二面角SAMB的大小【考点】LO:空间中直线与直线之间的位置关系;MJ:二面角的平面角及求法菁优网版权所有【专题】1
23、1:计算题;14:证明题【分析】()法一:要证明M是侧棱SC的中点,作MNSD交CD于N,作NEAB交AB于E,连ME、NB,则MN面ABCD,MEAB,设MN=x,则NC=EB=x,解RTMNE即可得x的值,进而得到M为侧棱SC的中点;法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系Dxyz,并求出S点的坐标、C点的坐标和M点的坐标,然后根据中点公式进行判断;法三:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系Dxyz,构造空间向量,然后数乘向量的方法来证明()我们可以以D为坐标原点,分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系Dxyz,我们可以利用
24、向量法求二面角SAMB的大小【解答】证明:()作MNSD交CD于N,作NEAB交AB于E,连ME、NB,则MN面ABCD,MEAB,设MN=x,则NC=EB=x,在RTMEB中,MBE=60在RTMNE中由ME2=NE2+MN23x2=x2+2解得x=1,从而M为侧棱SC的中点M()证法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系Dxyz,则设M(0,a,b)(a0,b0),则,由题得,即解之个方程组得a=1,b=1即M(0,1,1)所以M是侧棱SC的中点(I)证法三:设,则又故,即,解得=1,所以M是侧棱SC的中点()由()得,又,设分别是平面SAM、MAB的法向量,则且,
25、即且分别令得z1=1,y1=1,y2=0,z2=2,即,二面角SAMB的大小【点评】空间两条直线夹角的余弦值等于他们方向向量夹角余弦值的绝对值;空间直线与平面夹角的余弦值等于直线的方向向量与平面的法向量夹角的正弦值;空间锐二面角的余弦值等于他的两个半平面方向向量夹角余弦值的绝对值;20(12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立已知前2局中,甲、乙各胜1局()求再赛2局结束这次比赛的概率;()求甲获得这次比赛胜利的概率【考点】C8:相互独立事件和相互独立事件的概率乘法公式菁优网版权
26、所有【专题】12:应用题【分析】根据题意,记“第i局甲获胜”为事件Ai(i=3,4,5),“第j局甲获胜”为事件Bi(j=3,4,5),(1)“再赛2局结束这次比赛”包含“甲连胜3、4局”与“乙连胜3、4局”两个互斥的事件,而每局比赛之间是相互独立的,进而计算可得答案,(2)若“甲获得这次比赛胜利”,即甲在后3局中,甲胜2局,包括3种情况,根据概率的计算方法,计算可得答案【解答】解:记“第i局甲获胜”为事件Ai(i=3,4,5),“第j局甲获胜”为事件Bi(j=3,4,5)()设“再赛2局结束这次比赛”为事件A,则A=A3A4+B3B4,由于各局比赛结果相互独立,故P(A)=P(A3A4+B3
27、B4)=P(A3A4)+P(B3B4)=P(A3)P(A4)+P(B3)P(B4)=0.60.6+0.40.4=0.52()记“甲获得这次比赛胜利”为事件H,因前两局中,甲、乙各胜1局,故甲获得这次比赛胜利当且仅当在后面的比赛中,甲先胜2局,从而B=A3A4+B3A4A5+A3B4A5,由于各局比赛结果相互独立,故P(H)=P(A3A4+B3A4A5+A3B4A5)=P(A3A4)+P(B3A4A5)+P(A3B4A5)=P(A3)P(A4)+P(B3)P(A4)P(A5)+P(A3)P(B4)P(A5)=0.60.6+0.40.60.6+0.60.40.6=0.648【点评】本小题考查互斥事
28、件有一个发生的概率、相互独立事件同时发生的概率,解题之前,要分析明确事件间的关系,一般先按互斥事件分情况,再由相互独立事件的概率公式,进行计算21(12分)已知函数f(x)=x43x2+6()讨论f(x)的单调性;()设点P在曲线y=f(x)上,若该曲线在点P处的切线l通过坐标原点,求l的方程【考点】6B:利用导数研究函数的单调性;6H:利用导数研究曲线上某点切线方程菁优网版权所有【专题】16:压轴题【分析】(1)利用导数求解函数的单调性的方法步骤进行求解(2)根据已知,只需求出f(x)在点P处的导数,即斜率,就可以求出切线方程【解答】解:()令f(x)0得或;令f(x)0得或因此,f(x)在
29、区间和为增函数;在区间和为减函数()设点P(x0,f(x0),由l过原点知,l的方程为y=f(x0)x,因此f(x0)=f(x0)x0,即x043x02+6x0(4x036x0)=0,整理得(x02+1)(x022)=0,解得或所以的方程为y=2x或y=2x【点评】本题比较简单,是一道综合题,主要考查函数的单调性、利用导数的几何意义求切线方程等函数基础知识,应熟练掌握22(12分)如图,已知抛物线E:y2=x与圆M:(x4)2+y2=r2(r0)相交于A、B、C、D四个点()求r的取值范围;()当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标【考点】IR:两点间的距离公式;JF:
30、圆方程的综合应用;K8:抛物线的性质菁优网版权所有【专题】15:综合题;16:压轴题【分析】(1)先联立抛物线与圆的方程消去y,得到x的二次方程,根据抛物线E:y2=x与圆M:(x4)2+y2=r2(r0)相交于A、B、C、D四个点的充要条件是此方程有两个不相等的正根,可求出r的范围(2)先设出四点A,B,C,D的坐标再由(1)中的x二次方程得到两根之和、两根之积,表示出面积并求出其的平方值,最后根据三次均值不等式确定得到最大值时的点P的坐标【解答】解:()将抛物线E:y2=x代入圆M:(x4)2+y2=r2(r0)的方程,消去y2,整理得x27x+16r2=0(1)抛物线E:y2=x与圆M:(x4)2+y2=r2(r0)相交于A、B、C、D四个点的充要条件是:方程(1)有两个不相等的正根即解这个方程组得,(II)设四个交点的坐标分别为、则直线AC、BD的方程分别为y=(xx1),y+=(xx1),解得点P的坐标为(,0),则由(I)根据韦达定理有x1+x2=7,x1x2=16r2,则令,则S2=(7+2t)2(72t)下面求S2的最大值由三次均值有:当且仅当7+2t=144t,即时取最大值经检验此时满足题意故所求的点P的坐标为【点评】本题主要考查抛物线和圆的综合问题圆锥曲线是高考必考题,要强化复习